基于卷积神经网络与门控循环单元的交通流预测模型
CSTR:
作者:
作者单位:

1.中国人民公安大学,交通管理学院,北京 100038;2.中国人民公安大学,信息网络安全学院,北京 100038;3.山东科技大学 电气信息系,济南 250000

作者简介:

王博文(1999—),女,硕士研究生,主要从事智能交通、交通安全、数据挖掘方向研究,(E-mail) 201621310017@stu.ppsuc.edu.cn。

通讯作者:

王景升(1970—),男,副教授,主要从事智能交通方向研究,(E-mail) wjs1970@vip.163.com。

中图分类号:

TP183;U491.14

基金项目:

公安部公安理论及软科学研究计划资助项目(2020LLYJGADX020);中国人民公安大学基本科研学科基础理论体系项目(2022JKF02013)。


Multivariable traffic flow prediction model based on convolutional neural network and gate recurrent unit
Author:
Affiliation:

1.a. School of Traffic Management; 1b. School of Information Network Security, People’s Public Security University of China, Beijing 100038, P. R. China; 2. Department of Electrical Information, Shandong University of Science and Technology, Jinan 250000, P. R. China

Fund Project:

Supported by Public Security Theory and Soft Science Research Project of Ministry of Public Security(2020LLYJGADX020), and Project of Basic Theory System of Basic Scientific Research Discipline of People’s Public Security University of China (2022JKF02013).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为对交通流进行多步预测,支持智能交通系统的长期决策任务,一种基于编码器 -解码器(encoder-decoder, ED)的卷积神经网络(convolutional neural networks, CNN)-门循环 单元(gate recurrent unit, GRU)模型,简称 ED CNN-GRU。首先使用 CNN 作为编码器,对交 通流序列进行信息捕捉,再将上述信息通过 GRU 解码器进行解释并输出。实验证明,对比 CNN、GRU 单个模型,ED 框架有效解决了误差的迅速累积问题。对比其他基准模型,CNN、 GRU 模型对于交通流序列的特征提取及解释能力较为优秀。对于未来 12 个步长的交通流量 预测任务,对比其他基准模型,单因素输入情况的 ED CNN-GRU 模型的均方根误差下降约 0.344~6.464,平均绝对误差下降约 0.192~0.425。对比单因素输入,多因素输入下 ED CNN-GRU 模型拥有更好的预测能力。证明了 ED CNN-GRU 模型在不同输入维度的多步交通流预测中任务中均具有良好的预测能力,为数据获取条件不同的城市提供了一个支持单因素及多因素输入情况的多步交通流预测模型。

    Abstract:

    For multi-step forecasting of traffic flow, a convolutional neural networks (CNN)-gate recurrent unit (GRU) model based on encoder-decoder (ED) framework was proposed, referred to as the ED CNN-GRU model. In this model, CNN serves as the encoder, capturing information from the traffic flow sequence, which is then interpreted and outputted by the GRU decoder. Experimental results show that compared with CNN and GRU models, ED framework effectively solves the problem of rapid error accumulation. Compared with other benchmark models, CNN and GRU models are superior in feature extraction and interpretation of traffic flow series. In terms of the traffic flow prediction task of 12 steps in the future, compared with other benchmark models, the root mean square error of the univariate input ED CNN-GRU model is reduced by about 0.344 to 6.464, and the mean absolute error is reduced by about 0.192 to 0.425. Additionally, compared with univariate input, the ED CNN-GRU model with multivariate input exhibits a better fitting performance. These findings confirm that ED CNN-GRU model possesses strong forecasting capabilities for multi-step traffic flow forecasting tasks with varying input dimensions, and provides a multi-step traffic flow forecasting model that supports both univariate and multivariate input for cities with diverse data acquisition conditions.

    参考文献
    相似文献
    引证文献
引用本文

王博文,王景升,王统一,夏天雨,赵丹婷.基于卷积神经网络与门控循环单元的交通流预测模型[J].重庆大学学报,2023,46(8):132-140.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-25
  • 出版日期:
文章二维码