基于k-means的动态多组织PBFT算法
作者:
作者单位:

1.重庆师范大学,计算机与信息科学学院,重庆 401331;2.重庆师范大学,数字教育工程与应用研究中心,重庆 401331

作者简介:

杨雨浓(1978—),男,副研究员,博士,主要从事人工智能、区块链方向研究,(E-mail)yangyunong@cqnu.edu.cn。

通讯作者:

王洪,男,高级实验师,(E-mail)tonywanghong@126.com。

中图分类号:

TP311

基金项目:

重庆市教委科学技术研究项目(KJZD-K202300515)。


Dynamic multi-organizational PBFT algorithm based on k-means
Author:
Affiliation:

1.College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, P. R. China;2.Digital Education Engineering Center for Technology and Applied Research, Chongqing Normal University, Chongqing 401331, P. R. China

Fund Project:

Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202300515).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    联盟区块链系统被广泛用于金融和物流等场景。现有应用于区块链系统的实用拜占庭算法(practical Byzantine fault tolerance,PBFT)存在可扩展性较低及通信成本较高等问题,阻碍了区块链系统在大规模场景中的应用。针对上述问题,提出了一种动态多组织实用拜占庭容错算法(k-means-practical Byzantine fault tolerance,k-PBFT)。通过改进k-means算法,根据节点的时延以及节点间通信距离将节点分为多个自治组织,各组织之间通过组织代表节点进行通信。当新节点加入时,根据其特点将其分配到最合理的组织。同时,引入信誉机制以辨别系统中的诚实节点与恶意节点,从而提高系统的安全性。此外,该算法还引入节点任期机制,使区块链中每个诚实节点都有机会充当组织代表节点或主节点。实验结果表明,与PBFT算法相比,k-PBFT算法通信复杂度降低了75%;当节点数为100时,相比于PBFT算法,时延降低了210 ms,吞吐量提高了100%。在高延迟环境下,相较于基于信誉分组的PBFT改进算法,当节点数为100时,时延降低了20%,吞吐量提高了17%。

    Abstract:

    Federated blockchain systems find widely application in fields such as finance and logistics. However, the practical Byzantine fault tolerance (PBFT) algorithm, commonly applied to these systems, encounters challenges of low scalability and high communication cost, limiting its effectiveness in large-scale scenarios. To address these issues, the k-PBFT consensus algorithm, a dynamic multi-organizational practical Byzantine fault-tolerant algorithm, is proposed. The k-PBFT algorithm leverages an enhanced k-means algorithm to partition nodes into multiple autonomous organizations based on node time delays and communication distances. Each organization communicates through designated representative nodes. When a new node joins, it is assigned to the most suitable organization based on its characteristics. Additionally, the k-PBFT algorithm improves system security by introducing a reputation mechanism to distinguish honest nodes from malicious ones. It also implements a node tenure mechanism, giving honest node in the blockchain the opportunity to serve as representative or master node within an organization. Experimental results show significant improvements over the PBFT algorithm: the k-PBFT algorithm reduces communication complexity by 75%, decreases latency by 210 ms, and increases throughput by 100% with 100 nodes. In high-latency environments, the k-PBFT algorithm reduces latency by 20% and boosts throughput by 17% compared to the improved PBFT algorithm based on reputation grouping with 100 nodes.

    表 2 Table 2
    表 1 Table 1
    表 4 k-PBFT算法与常见的共识算法对比Table 4 The k-PBFT algorithm compares with the common consensus algorithm
    表 3 Table 3
    图1 传统PBFT算法共识流程Fig.1 The traditional PBFT consensus process
    图2 k-PBFT算法基本流程Fig.2 The basic process of k-PBFT algorithm
    图3 信誉值机制流程Fig.3 The process of the credibility value mechanism
    图4 k-PBFT算法共识流程Fig.4 The consensus process of k-PBFT algorithm
    图5 组织代表节点联合作恶概率Fig.5 The probability of joint criminality by representative node
    图6 诚实组织联合作恶概率Fig.6 The probability of joint criminality between honest organizations
    图7 通信成本实验Fig.7 Communication Cost Experiment
    图8 时延对比实验Fig.8 Delay comparison experiments
    图9 高时延对比实验Fig.9 Delay comparison experiments(high latency)
    图10 吞吐量对比图(低时延)Fig.10 Traffic comparison graph (low latency)
    图11 吞吐量对比图(高时延)Fig.11 Traffic comparison graph (high latency)
    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨雨浓,唐凌翔,王洪.基于k-means的动态多组织PBFT算法[J].重庆大学学报,2024,47(7):125-139.

复制
相关视频

分享
文章指标
  • 点击次数:142
  • 下载次数: 265
  • HTML阅读次数: 88
  • 引用次数: 0
历史
  • 收稿日期:2023-07-09
  • 在线发布日期: 2024-08-15
文章二维码