基于STA-YOLOv5的水利建造人员安全帽佩戴检测算法
作者:
作者单位:

1.重庆市西部水资源开发有限公司 重庆 401329;2.重庆大学 自动化学院,重庆 400030;3.中国建筑科学研究院有限公司, 北京 100013

作者简介:

李顺祥(1969—),男,高级工程师,主要从事水利工程建设管理、智慧水利等方向研究,(E-Mail)281849629@qq.com。

通讯作者:

王楷(1981—),男,博士,副教授,(E-mail)kaiwang@cqu.edu.cn。

基金项目:

重庆市水利科技资助项目(渝西水司文[2021]19号),重庆市技术创新与应用发展专项重点项目(cstc2021jscx-gksbX0032)。


Hydraulic construction personnel safety helmet wearing detection algorithm based on STA-YOLOv5
Author:
Affiliation:

1.Chongqing Western Water Resources Development Co., Ltd., Chongqing 401329, P. R. China;2.College of Automation, Chongqing University, Chongqing 400030, P. R. China;3.China Academy of Building Research, Beijing 100013, P. R. China

Fund Project:

Supported by Chongqing Water Science and Technology Project (No.19, Shuisiwen [2021], West Chongqing) and the Technology Innovation & Application Development Projects of Chongqing(cstc2021jscx-gksbX0032).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在大型水利建造工程现场,存在高空坠物、塔吊转动、墙体坍塌等问题,对于建造人员人身安全造成巨大威胁,佩戴安全帽是保护建造人员的有效措施,作为工程作业中的安全管理,对建造人员进行安全帽佩戴的精确检测很有必要。针对现有安全帽检测算法在大型水利建造场景下对小且密集的安全帽目标存在漏检、检测精度较低等问题,提出一种基于STA-YOLOv5的安全帽佩戴检测算法,该算法将Swin Transformer和注意力机制引入到YOLOv5算法中,提高模型对安全帽的识别能力。实验结果表明,STA-YOLOv5算法具有更精确检测结果,识别准确率达到91.6%,较原有的YOLOv5算法有明显提升。

    Abstract:

    At the site of large-scale water conservancy construction projects, there are problems such as falling objects, tower crane rotation, wall collapse, which pose a great threat to the personal safety of construction personnel. Wearing safety helmets is an effective measure to protect construction personnel. Therefore, it is necessary for construction personnel to carry out accurate detection of helmet wearing as a safety management in engineering operations. Aiming at the problems of missing detection and low detection accuracy of small and dense helmet targets in large-scale hydraulic construction scenarios, a helmet wearing detection algorithm based on STA-YOLOv5 is proposed, which introduces Swin Transformer and attention mechanism into YOLOv5 algorithm to improve the identification ability of the model to the helmet. The experimental results show that the STA-YOLOv5 algorithm has more accurate detection results, and the recognition accuracy reaches 91.6%, which is significantly improved compared with the original YOLOv5 algorithm.

    参考文献
    [1] 张博,宋元斌,熊若鑫,等.融合人体关节点的安全帽佩戴检测[J]. 中国安全科学学报, 2020, 30(2): 177-182.Zhang B,Song Y B,Xiong R X,et al.Helmet-wearing detection considering human joint[J].China Safety Science Journal,2020,30(2):177-182.(in Chinese)
    [2] 朱晓春,王欣,马国力, 等.改进YOLO v3算法的安全帽佩戴检测[J]. 南京工程学院学报(自然科学版), 2020, 18(4): 23-26.Zhu X C,Wang X,Ma G L, et al.Safety helmet wearing detection for improved YOLO v3 algorithm[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2020, 18(4): 23-26.(in Chinese)
    [3] 胡晓栋, 王国明. 基于改进YOLOv5的安全帽检测算法研究[J]. 计算机时代, 2023(6): 76-81.Hu X D, Wang G M. Research on helmet detection algorithm based on improved YOLOv5[J].Computer Era, 2023(6): 76-81. (in Chinese)
    [4] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.Wang LM, Duan J, Xin L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312. (in Chinese)
    [5] 沈希忠, 戚成. 改进YOLOX的安全帽佩戴检测算法[J]. 浙江工业大学学报, 2023, 51(3): 289-297.Shen X Z, Qi C. Improved safety helmet wearing detection algorithm of YOLOX[J]. Journal of Zhejiang University of Technology, 2023, 51(3): 289-297.(in Chinese)
    [6] Vishnu C, Singh D, Mohan C K, et al. Detection of motorcyclists without helmet in videos using convolutional neural network[C]//2017 International Joint Conference on Neural Networks (IJCNN). May 14-19, 2017. Anchorage, AK, USA: IEEE, 2017: 3036-3041.
    [7] Hao W A, Jza B. An intelligent vision based approach for helmet identification for work safety[J]. Computers in Industry, 2018, 100: 267-277.
    [8] 江新玲, 杨乐, 朱家辉, 等. 面向复杂场景的基于改进YOLOXs的安全帽检测算法[J]. 南京师大学报(自然科学版), 2023, 46(2): 107-114.Jiang X L, Yang L, Zhu J H, et al. Safety helmet detection algorithm based on improved YOLOXs for complex scenes[J]. Journal of Nanjing Normal University (Natural Science Edition), 2023, 46(2): 107-114. (in Chinese)
    [9] 李达, 刘辉. 针对小目标的YOLOv5安全帽检测算法[J]. 现代信息科技, 2023, 7(9): 9-13.Li D, Liu H. YOLOv5 helmet detection algorithm for small targets[J]. Modern Information Technology, 2023, 7(9): 9-13. (in Chinese)
    [10] 陈光, 乔梁, 黄晓明, 等. 基于目标跟踪的行为识别方法研究:以安全帽佩戴识别检测为例[J]. 黑龙江科学, 2023, 14(8):50-52.Chen G, Qiao L, Huang X M, et al. Research on behavior recognition method based on target tracking: through taking helmet wear identification detection as an example[J]. Heilongjiang Science, 2023, 14(8): 50-52. (in Chinese)
    [11] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA: IEEE, 2016:779-788.
    [12] Redmon J, Farhadi A.YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). July 21-26, 2017. Honolulu, HI, USA: IEEE, 2017:6517-6525.
    [13] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018: arXiv:1804.02767. https://arxiv.org/abs/1804.02767.
    [14] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
    [15] Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT, USA: IEEE, 2018:8759-8768.
    [16] 郑楚伟, 林辉. 基于Swin Transformer的YOLOv5安全帽佩戴检测方法[J]. 计算机测量与控制, 2023, 31(3): 15-21.Zheng C W, Lin H. YOLOv5 helmet wearing detection method based on swin transformer[J]. Computer Measurement & Control,2023,31(3):15-21.(in Chinese)
    [17] 乔炎, 甄彤, 李智慧. 改进YOLOv5的安全帽佩戴检测算法[J]. 计算机工程与应用, 2023, 59(11): 203-211.Qiao Y, Zhen T, Li Z H. Improved helmet wear detection algorithm for YOLOv5[J].Computer Engineering and Applications, 2023, 59(11) :203-211. (in Chinese)
    [18] Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107:3-11.
    [19] Cao X, Zhang Y W, Lang S, et al. Swin transformer based YOLOv5 for small-object detection in remote sensing images[J].Sensors,2023,23(7):3634.
    [20] Wen X, Li B, Wang X W, et al. A Swin transformer-functionalized lightweight YOLOv5s for real-time coal-gangue detection[J]. Journal of Real-Time Image Processing, 2023, 20(3): 47.
    [21] 嵇文,刘全金, 黄崇文,等.基于Swin-Transformer的YOLOX交通标志检测[J].无线电通信技术,2023,49(3):547-555.Ji W, Liu Q J, Huang C W, et al. YOLOX traffic sign detection based on Swin-Transformer[J]. Radio Communications Technology, 2023, 49(3): 547-555.(in Chinese)
    [22] 任钰. 基于Faster R-CNN的小目标检测研究与应用[D]. 安庆: 安庆师范大学, 2022.Ren Y. Research and application of small target detection based on faster R-CNN[D]. Anqing: Anqing Normal University, 2022. (in Chinese)
    [23] 张雪明, 茅健. 嵌入SENet的卷积神经网络的零件缺陷检测方法[J]. 农业装备与车辆工程, 2023, 61(1): 94-98.Zhang X M, Mao J. A method of parts defect detection based on convolutional neural network embedded in SENet[J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(1): 94-98. (in Chinese)
    [24] Dai J F, Qi H Z, Xiong Y W, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision (ICCV).October 22-29, 2017. Venice, Italy: IEEE, 2017: 764-773.
    [25] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.Lu J Z, Zhang C Y, Liu S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328. (in Chinese)
    [26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT, USA: IEEE,2018:7132-7141.
    [27] Neubeck A, Van Gool L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition (ICPR’06). August 20-24, 2006. Hong Kong, China: IEEE, 2006: 850-855.
    [28] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李顺祥,蒋海洋,熊伶,黄才生,蒋有高,邓曦,王楷,张鹏.基于STA-YOLOv5的水利建造人员安全帽佩戴检测算法[J].重庆大学学报,2023,46(9):142-152.

复制
分享
文章指标
  • 点击次数:283
  • 下载次数: 512
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2023-05-12
  • 在线发布日期: 2023-09-25
文章二维码