冷弯加劲高强方钢管柱受力性能及经济性分析
作者:
作者单位:

1.重庆大学 土木工程学院 重庆 400045;2.重庆苯特钢结构有限公司,重庆 400707

作者简介:

庞士云(1994—)女,博士研究生,主要从事钢结构抗火性能研究,(E-mail)shiyun0820@163.com。

通讯作者:

王卫永(1982—)男,博士,教授,(E-mail)wywang@cqu.edu.cn。

中图分类号:

TU392

基金项目:

重庆市自然科学基金(cstc2021jcyj-jqX0021)。


Load bearing capacity and economic analysis of high-strength steel square columns with cold-formed stiffeners
Author:
Affiliation:

1.College of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.Chongqing Bente Steel Structure Co., Ltd., Chongqing 400707, P. R. China

Fund Project:

Supported by Chongqing Municipal Natural Science Foundation (cstc2021jcyj-jqX0021).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    工程中常采用在截面上布置加劲肋的方法来增强构件的稳定性能。为研究冷弯加劲对高强钢管柱受力性能的影响,评估加劲高强钢管柱的经济性。采用有限元ABAQUS软件,建立了冷弯加劲钢管柱轴心受压分析模型。通过考察加劲形状、加劲个数、加劲间距及加劲大小对Q355钢管柱受力性能的影响,确定最优截面形式,进而分析在极限承载力相当时,高强Q690冷弯加劲钢管柱比普通Q355钢管柱用钢量的节约程度。结果表明,设置冷弯加劲可以明显地提升钢管柱轴心受压承载力,冷弯加劲对钢管柱承载力的提高作用随着加劲个数的增加基本保持不变。采用单个半圆弧加劲时,对构件承载力的增强作用便可达到良好的效果。冷弯加劲之间的距离对构件的稳定承载能力基本没有影响。加劲圆弧半径建议取板件厚度的2倍。承载力相当时,冷弯加劲Q690钢管柱的用钢量比Q355钢管柱节省35%左右。

    Abstract:

    In practical application, arranging stiffeners on a section is a common method used to enhance the stability of structural members. This study focuses on investigating the effects of cold-formed stiffeners on the mechanical properties of high-strength steel tubular columns and evaluating the cost effectiveness of these stiffened columns. An axial compression analysis model for cold-formed stiffened steel tubular columns was established by using finite element ABAQUS software. The study explored the optimal stiffening configuration by investigating the influence of stiffening shape, the number of stiffeners, stiffening spacing and stiffening size on the mechanical performance of Q355 steel pipe columns. Furthermore, the reduction in steel consumption for high-strength Q690 cold-formed stiffened steel pipe columns was analyzed when their ultimate bearing capacity was equivalent to that of ordinary Q355 steel pipe columns. The results show that the addition of cold-formed stiffeners significantly improves the axial compression bearing capacity of steel pipe columns. Interestingly, the improvement in bearing capacity remains consistent even as the number of stiffeners increases. Notably, using a single semicircular arc stiffener yields favorable results in enhancing member bearing capacity. The spacing between cold-formed stiffeners has minimal effects on the overall stability of the members. It is recommended that the radius of the stiffener arc twice the thickness of plate. When achieving equal bearing capacity, the steel consumption for cold-formed stiffened Q690 steel pipe column is about 35% lower than that of Q355 steel pipe columns.

    参考文献
    [1] Young B, Chen J. Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134(5): 727-737.
    [2] 施刚, 石永久, 王元清. 超高强度钢材钢结构的工程应用[J]. 建筑钢结构进展, 2008, 10(4): 32-38.Shi G, Shi Y J, Wang Y Q. Engineering application of ultra-high strength steel structures[J]. Progress in Steel Building Structures, 2008, 10(4): 32-38.(in Chinese)
    [3] 刘佳, 郭小农, 王人鹏, 等. 铝合金H型挤压型材截面优化设计研究[C]// 第四届全国工程结构安全检测鉴定与加固修复研讨会. 北京: 《工业建筑》杂志社, 2015: 118-124.LIU Jia, GUO Xiaonong, WANG Renpeng, et al. Research on section optimization for aluminum alloy extruded H-profiles[C]// The 4th National Seminar on Engineering Structural Safety Inspection and Identification and Reinforcement and Repair. Beijing: Industrial Construction, 2015: 118-124. (in Chinese)
    [4] 袁霖, 张其林, 罗晓群. 球头加劲铝合金轴压构件的局部稳定设计方法分析[J]. 建筑结构学报, 2021, 42(4): 185-193.Yuan L, Zhang Q L, Luo X Q. Design method analysis on local stability of aluminum alloy members with bulb stiffeners under axial compression[J]. Journal of Building Structures, 2021, 42(4): 185-193. (in Chinese)
    [5] 李元齐, 姚行友, 沈祖炎, 等. 冷弯薄壁型钢中间加劲板件有效面积计算方法[J]. 同济大学学报(自然科学版), 2011, 39(11): 1563-1568.Li Y Q, Yao X Y, Shen Z Y, et al. Estimation method for effective area of cold-formed thin-walled steel plate elements with intermediate stiffeners[J]. Journal of Tongji University (Natural Science), 2011, 39(11): 1563-1568. (in Chinese)
    [6] 常福清, 侯密山. 全波纹腹板H型钢柱的弹性稳定性[J]. 东北重型机械学院学报, 1991, 15(3): 242-247.Chang F Q, Hou M S. Elastic stability of whole corrugated web(WCW) wide flange beam[J]. Journal of Yanshan University, 1991, 15(3): 242-247.(in Chinese)
    [7] 常福清. 全波纹腹板H型钢柱的弹塑性屈曲[J]. 力学与实践, 1991, 13(6): 38-40.Chang F Q. Elastic-plastic buckling of H-shaped steel columns with full corrugated webs[J]. Mechanics in Engineering, 1991, 13(6): 38-40.(in Chinese)
    [8] 常福清. 全波纹腹板H型钢的弹塑性屈曲[J]. 机械强度, 1992, 14(2): 69-72.Chang F Q. Elastic-plastic buckling of H-beam with full corrugated webs[J]. Journal of Mechanical Strength, 1992, 14(2): 69-72.(in Chinese)
    [9] 张哲, 李国强, 孙飞飞. 波纹腹板H型钢研究综述[J]. 建筑钢结构进展, 2008, 10(6): 41-46.Zhang Z, Li G Q, Sun F F. State-of-the-art of research on H-beam with trapezoidally corrugated webs[J]. Progress in Steel Building Structures, 2008, 10(6): 41-46.(in Chinese)
    [10] Young B, Hancock G J. Compression tests of channels with inclined simple edge stiffeners[J]. Journal of Structural Engineering, 2003, 129(10): 1403-1411.
    [11] Yan J T, Young B. Column tests of cold-formed steel channels with complex stiffeners[J]. Journal of Structural Engineering, 2002, 128(6): 737-745.
    [12] 李元齐, 沈祖炎, 王磊, 等. 高强冷弯薄壁型钢卷边槽形截面构件设计可靠度分析[J]. 建筑结构学报, 2010, 31(11): 36-44.Li Y Q, Shen Z Y, Wang L, et al. Design reliability analysis of high-strength cold-formed thin-walled steel members with lipped channel sections[J]. Journal of Building Structures, 2010, 31(11): 36-44.(in Chinese)
    [13] Manikandan P, Balaji S, Sukumar S, et al. Experimental and numerical analysis of web stiffened cold-formed steel channel column with various types of edge stiffener[J]. International Journal of Advanced Structural Engineering, 2017, 9(2): 129-138.
    [14] Manikandan P, Sukumar S, Kannan K. Distortional buckling behaviour of intermediate cold-formed steel lipped channel section with various web stiffeners under compression[J]. International Journal of Advanced Structural Engineering, 2018, 10(3): 189-198.
    [15] Chen J, Chen M T, Young B. Compression tests of cold-formed steel C- and Z-sections with different stiffeners[J]. Journal of Structural Engineering, 2019, 145(5): 04019022.
    [16] 黄丽华, 康磊. 加劲对冷弯薄壁卷边槽钢局部和畸变耦合屈曲作用[J]. 大连理工大学学报, 2021, 61(5): 514-521.Huang L H, Kang L. Effect of stiffener on local and distortional coupled buckling of cold-formed thin-walled lipped steel with channel section[J]. Journal of Dalian University of Technology, 2021, 61(5): 514-521.(in Chinese)
    [17] Pocock G. High strength steel use in Australia, Japan and the US[J]. The Structural Engineer, 2006, 84(21): 27-30.
    [18] 范重, 刘先明, 范学伟, 等. 国家体育场大跨度钢结构设计与研究[J]. 建筑结构学报, 2007, 28(2): 1-16.Fan Z, Liu X M, Fan X W, et al. Design and research of large-span steel structure for the National Stadium[J]. Journal of Building Structures, 2007, 28(2): 1-16.(in Chinese)
    [19] 王彦博, 李国强, 陈素文, 等. Q460高强钢焊接H形柱轴心受压力学性能数值分析[J]. 建筑钢结构进展, 2013, 15(5): 1-7.Wang Y B, Li G Q, Chen S W, et al. Numerical analysis on Q460 high strength steel welded H-shaped columns under axial compression[J]. Progress in Steel Building Structures, 2013, 15(5): 1-7.(in Chinese)
    [20] 薛加烨. 高强度钢材受压构件整体稳定性能试验研究[D]. 南京: 东南大学, 2014.Xue J Y. Experimental research on the overall buckling behavior of high strength steel members under compression[D]. Nanjing: Southeast University, 2014. (in Chinese))
    [21] Shi G, Ban H Y, Bijlaard F S K. Tests and numerical study of ultra-high strength steel columns with end restraints[J]. Journal of Constructional Steel Research, 2012, 70: 236-247.
    [22] Shi G, Zhou W J, Bai Y, et al. Local buckling of 460 MPa high strength steel welded section stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 100: 60-70.
    [23] 班慧勇, 施刚, 石永久. 960 MPa高强度钢材轴压构件整体稳定性能试验研究[J]. 建筑结构学报, 2014, 35(1): 117-125.Ban H Y, Shi G, Shi Y J. Overall buckling behavior of 960 MPa high strength steel welded section columns subjected to axial compression[J]. Journal of Building Structures, 2014, 35(1): 117-125.(in Chinese)
    [24] 徐克龙, 施刚, 林错错. 960 MPa高强度钢材轴压柱局部稳定性能及设计方法[J]. 湖南大学学报(自然科学版), 2017, 44(1): 102-111.Xu K L, Shi G, Lin C C. Analysis and design method on local buckling behavior of 960 MPa high strength steel columns under axial compression[J]. Journal of Hunan University (Natural Sciences), 2017, 44(1): 102-111.(in Chinese)
    [25] 王卫永, 张艳红, 李国强. 高强钢高温下和高温后力学性能指标的标准值研究[J]. 建筑结构学报, 2022, 43(9): 138-150.Wang W Y, Zhang Y H, Li G Q. Study on nominal values of mechanical properties of high strength steel at elevated temperature and after fire exposure[J]. Journal of Building Structures, 2022, 43(9): 138-150.(in Chinese)
    [26] Xing Y H, Wang W Y, Al-azzani H. Assessment of thermal properties of various types of high-strength steels at elevated temperatures[J]. Fire Safety Journal, 2021, 122: 103348.
    [27] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of steel structure: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [28] 班慧勇. 高强度钢材轴心受压构件整体稳定性能与设计方法研究[D]. 北京: 清华大学, 2012.Ban H Y. Study on overall stability and design method of high-strength steel axial compression members[D].Beijing: Tsinghua University, 2012. (in Chinese)
    [29] 石永久, 余香林, 班慧勇, 等. 高性能结构钢材与钢结构体系研究与应用[J]. 建筑结构, 2021, 51(17): 145-151, 128.Shi Y J, Yu X L, Ban H Y, et al. Research and application on high performance structural steel and its structural system[J]. Building Structure, 2021, 51(17): 145-151, 128.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

庞士云,王卫永,谭兴奎,黄丹,王子琦.冷弯加劲高强方钢管柱受力性能及经济性分析[J].重庆大学学报,2023,46(10):1-14.

复制
分享
文章指标
  • 点击次数:299
  • 下载次数: 588
  • HTML阅读次数: 86
  • 引用次数: 0
历史
  • 收稿日期:2023-04-05
  • 在线发布日期: 2023-11-06
文章二维码