多因素耦合下深水钢管桩偏位简化计算方法
作者:
作者单位:

1.重庆大学 土木工程学院,重庆 400045;2.中铁十一局集团第五工程有限公司,重庆 400037

作者简介:

张刚领(1996—),男,硕士研究生,主要从事结构健康监测及桥梁结构施工技术研究,(E-mail)472121668@qq.com。

中图分类号:

TU289

基金项目:

重庆市技术创新与应用发展专项(cstc2019jscx-msxmX0313);国家自然科学基金(52078084,51578095)。


A simplified calculation method for deflection of deep water steel pipe pile under multi-factor coupling
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.The 5th Engineering Co., Ltd. China Railway 11th Bureau Group, Chongqing 400037, P. R. China

Fund Project:

Supported by Chongqing Technology Innovation and Application Development Special Projects(cstc2019jscx-msxmX0313), and National Natural Science Foundation of China(52078084, 51578095).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    栈桥深水钢管桩属柔性、缺陷敏感结构,而目前尚无综合考虑几何初始缺陷、施工荷载和水流荷载耦合作用下桩顶偏位的简化计算方法,较难考虑深水钢管桩的非线性效应从而带来安全隐患。将水流荷载简化为倒三角分布荷载,分别采用水面以下、以上钢管桩的弹性稳定平衡微分方程,在考虑几何非线性的条件下推导出钢管桩偏位理论计算公式。在此基础上,选取不同长度钢管桩为研究对象,探究几何初始缺陷、几何非线性对钢管桩偏位的影响规律,并通过理论推导对偏位理论公式进行简化,以便于工程实际应用。分析结果表明,倒三角水流荷载简化模型在考虑几何非线性时的计算结果与不考虑几何非线性时结果相差较大,更符合柔性结构受水流荷载作用特点,为钢栈桥使用过程中考虑水流荷载影响及钢管桩桩顶侧移控制提供了方法支撑和切实可行的技术手段。

    Abstract:

    The steel pipe piles in the deep-water trestle are flexible yet highly sensitive to faults. Currently, there lacks a simplified calculation method that comprehensively account for the pile’s deflection at the top, with considering the combined effects of geometric initial defects, construction loads, and water flow load. This deficiency makes it challenging to address the non-linear behavior of steel pipe piles in deep water, thus posing safety risks. To address this issue, the water flow load was simplified to an inverted triangle distribution load, and elastic stable equilibrium differential equations for the steel pipe pile, both below and above the water surface, were respectively adopted to derive a theoretical calculation formula for pile deflection with considering geometric nonlinearity. Building upon this foundation, steel pipe piles of varying lengths were selected as the research object to explore the influence of geometric initial defects and nonlinearity on pile deflection. Through theoretical deviation, the theoretical formula was further simplified for derivation, making it more practical for engineering applications. The analysis results show that with considering geometric nonlinearity, the simplified model yields significantly different load flow calculations compared with models that neglect geometric nonlinearity. This is more in line with the flexible structure’s response to water loads. Consequently, our study provides valuable support and practical technology for managing water load impacts and lateral control of steel pipe piles in steel trestle structures during their operational life.

    参考文献
    [1] 王东辉, 张立超. 平潭海峡公铁两用大桥栈桥设计[J]. 桥梁建设, 2015, 45(4): 1-6.Wang D H, Zhang L C. Design of trestle of Pingtan Straits rail-cum-road bridge[J]. Bridge Construction, 2015, 45(4): 1-6. (in Chinese)
    [2] 刘涛, 陈允斌, 刘浩. 滨海软土筑岛围堰超深基坑工程实例分析[J]. 岩土工程学报, 2012, 34(S1): 773-778.Liu T, Chen Y B, Liu H. Case study of ultra-deep foundation pit by island and cofferdam construction in soft soils in coastal areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 773-778. (in Chinese)
    [3] Salau M A, Esezobor D E, Folorunso O M. Offshore steel structures corrosion damage model[J]. International Journal of Scientific and Engineering Research, 2013, 671(1):10-16.
    [4] Wang H, Cheng M H. Research on static and dynamic performance of large-span steel trestle[J]. Advanced Materials Research, 2013, 671/672/673/674: 1002-1006.
    [5] Wei C F, Hu S Y, Zhao B S. The research on vibration testing and analysis method of the steel truss coal trestle[J]. Applied Mechanics and Materials, 2013, 482: 141-144.
    [6] 董建华, 庄超. 深基坑框架预应力锚杆微型钢管桩联合支护结构力学特性分析[J]. 岩石力学与工程学报, 2019, 38(3): 619-633.Dong J H, Zhuang C. Mechanical properties of the combined retaining structure of frame prestressed anchors and micro steel tube piles in deep foundation pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 619-633. (in Chinese)
    [7] 贾强, 郑爱萍, 张鑫. 高承台钢管桩受压稳定性的试验研究和数值分析[J]. 岩土力学, 2011, 32(6): 1736-1740.Jia Q, Zheng A P, Zhang X. Test study and numerical analysis of stability of high-level cap steel tubular pile under compression loads[J]. Rock and Soil Mechanics, 2011, 32(6): 1736-1740.(in Chinese)
    [8] 肖成志, 夏博洋, 郑刚, 等. 基础埋深对碎石桩复合地基桩体破坏模式的影响[J]. 重庆大学学报, 2019, 42(7): 63-69.Xiao C Z, Xia B Y, Zheng G, et al. Influence of composite foundation embedded depth on the failure modes of stone columns[J]. Journal of Chongqing University, 2019, 42(7): 63-69. (in Chinese)
    [9] Liang Q Q, Patel V I, Hadi M N S. Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation[J]. Journal of Constructional Steel Research, 2012, 75: 64-71.
    [10] Lee C H, Baek J H, Chang K H. Bending capacity of girth-welded circular steel tubes[J]. Journal of Constructional Steel Research, 2012, 75: 142-151.
    [11] 魏巍, 郭喜, 喻德建. 错层框架结构考虑二阶效应的设计方法[J]. 重庆大学学报, 2019, 42(11): 29-37.Wei W, Guo X, Yu D J. The design method of staggered frame structure considering the second-order effect[J]. Journal of Chongqing University, 2019, 42(11): 29-37. (in Chinese)
    [12] 魏巍, 秦华平, 喻德建. 框架结构中越层柱考虑二阶效应的设计方法研究[J]. 建筑结构学报, 2018, 39(S2): 135-142.Wei W, Qin H P, Yu D J. Design method of multiple-story column considering second-order effect in frame structure[J]. Journal of Building Structures, 2018, 39(S2): 135-142. (in Chinese)
    [13] 刘毅, 刘年朋, 卓子, 等. 考虑刚度折减的弹性二阶分析法在双跨排架结构中的运用[J]. 重庆大学学报, 2017, 40(9): 1-7.Liu Y, Liu N P, Zhuo Z, et al. The application of elastic second-order method with considering stiffness reduction to two-span bent structure[J]. Journal of Chongqing University, 2017, 40(9): 1-7. (in Chinese)
    [14] 朱占友, 刘毅, 李战平, 等. 无侧移单元封闭框架二阶效应规律的解析解[J]. 重庆大学学报(自然科学版), 2006, 29(9): 130-133, 143.Zhu Z Y, Liu Y, Li Z P, et al. Analytic solution of second order effects regular pattern in non-sway closed cell frame[J]. Journal of Chongqing University (Natural Science Edition), 2006, 29(9): 130-133, 143. (in Chinese)
    [15] 许晶, 贡金鑫, 蒋秀根. 基于解析刚度模型的钢筋混凝土框架结构二阶效应分析[J]. 工程力学, 2015, 32(9): 111-118.Xu J, Gong J X, Jiang X G. Second order effect analysis of reinforced concrete frames based on analytical stiffness model[J]. Engineering Mechanics, 2015, 32(9): 111-118. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张刚领,陈永亮,崔福刚.多因素耦合下深水钢管桩偏位简化计算方法[J].重庆大学学报,2023,46(10):15-21.

复制
分享
文章指标
  • 点击次数:274
  • 下载次数: 552
  • HTML阅读次数: 68
  • 引用次数: 0
历史
  • 收稿日期:2023-04-03
  • 在线发布日期: 2023-11-06
文章二维码