下栓接贯通隔板-上焊接外环板节点抗连续倒塌性能数值模拟分析
作者:
作者单位:

1.河北工业大学 土木与交通学院,天津 300401;2.天津大学 建筑工程学院,天津 300072

作者简介:

许秀晨 (1996-),男,硕士研究生,主要从事钢管混凝土组合结构方向研究,(Email) night.xiu@qq.com。

通讯作者:

戎贤,男,教授,博士生导师,主要从事结构工程方向研究,(Email) xrong@hebut.edu.cn。

中图分类号:

TU391

基金项目:

国家自然科学基金资助项目(51808182);河北省自然科学基金资助项目(E2017202278)。


Numerical simulation for progressive collapse behavior of the joint with a lower bolted through diaphragm and anupper welded external plate
Author:
Affiliation:

1.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, P. R. China;2.School of Civil Engineering, Tianjin University, Tianjin 300072, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (51808182) and Hebei Provincial Natural Science Foundation (E2017202278).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过对不同连接方式的梁柱节点构造进行分析,发现采用新型节点形式(下栓接贯通隔板-上焊接外环板)更有利于发挥悬链线机制,提高构件抗连续倒塌能力。运用ABAQUS软件,对该节点形式下的不同跨高比、不同跨度比以及局部削弱截面下的失效模式、承载力-位移曲线、抗力机制进行分析,为提升梁柱节点抗连续倒塌能力提供了新的节点形式,为抗连续倒塌性能的设计奠定了基础。

    Abstract:

    Through the analysis of various beam-column connected joints,this study reveals that the new connection method, featuring a lower bolted-through diaphragm and an upper welded external plate, enhances the catenary mechanism and improves the resistance to continuous collapse. The analysis employs ABAQUS software to conduct a comprehensive examination of failure modes, load-displacement curves, and resistance mechanisms under varying span-to-height ratios, span ratios and locally weakened sections of this joint. This study introduces a novel joint design aimed at enhancing collapse behavior and establishing a foundation for the design of structures with improved resistance to continuous collapse.

    参考文献
    [1] General Serviced Administration. Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington, D.C.U.S:GSA,2016.
    [2] Department of Defense. Design of buildings to resist progressive collapse UFC 4-023-03[S].Washington D.C, U.S: Department of Defense,2016
    [3] Ellingwood B R, Smilowitz R, Dusenberry D O, et al. Best practices for reducing the potential for progressive collapse in buildings[R]. Maryland:National Institute of Standards and Technology,2007.
    [4] Li L, Wang W, Chen Y Y, et al. Experimental investigation of beam-to-tubular column moment connections under column removal scenario[J]. Journal of Constructional Steel Research, 2013, 88: 244-255.
    [5] Li L, Wang W, Chen Y Y, et al. A basis for comparing progressive collapse resistance of moment frames and connections[J]. Journal of Constructional Steel Research, 2017, 139: 1-5.
    [6] Yang B, Tan K H. Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario[J]. Engineering Structures, 2013, 54: 112-130.
    [7] Gao S, Xu M, Fu F, et al. Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario[J]. Journal of Constructional Steel Research, 2019, 159: 459-475.
    [8] 秦希, 王伟. 隔板贯通式全螺栓节点抗连续性倒塌性能数值模拟分析[J]. 振动与冲击, 2015, 34(10): 68-75.Qin X, Wang W. Numerical simulation for progressive collapse behavior of through diaphragm bolted beam-column joints[J]. Journal of Vibration and Shock, 2015, 34(10): 68-75.(in Chinese)
    [9] 钟炜辉, 谭政, 宋晓燕, 等. 不同跨度比组合梁柱子结构抗倒塌性能试验研究[J]. 建筑结构学报, 2020, 41(9): 45-55.Zhong W H, Tan Z, Song X Y, et al. Experimental study on anti-collapse performance of composite beam-column assemblies with different span ratios[J]. Journal of Building Structures, 2020, 41(9): 45-55.(in Chinese)
    [10] 戎贤, 张祥幸, 杜颜胜. 方钢管混凝土柱-H型梁新型节点倒塌性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 704-712.Rong X, Zhang X X, Du Y S. Experimental study on collapse behavior of a square concrete-filled steel tubular column-H-beam joint[J]. Journal of Tianjin University (Science and Technology), 2020, 53(7): 704-712.(in Chinese)
    [11] 王伟, 秦希, 王俊杰. 内隔板式与隔板贯通式方钢管混凝土柱-H形钢梁节点抗连续倒塌性能对比[J]. 建筑结构学报, 2017, 38(S1): 362-368.Wang W, Qin X, Wang J J. Comparison of progressive collapse behavior between inner-diaphragm stiffened and through-diaphragm stiffened concrete filled SHS column-H beam joints[J]. Journal of Building Structures, 2017, 38(S1): 362-368.(in Chinese)
    [12] Qin X, Wang W, Chen Y Y, et al. A special reinforcing technique to improve resistance of beam-to-tubular column connections for progressive collapse prevention[J]. Engineering Structures, 2016, 117: 26-39.
    [13] Qin X, Wang W, Chen Y Y, et al. Experimental study of through diaphragm connection types under a column removal scenario[J]. Journal of Constructional Steel Research, 2015, 112: 293-304.
    [14] Du Y S, Chen Z H, Wang Y B, et al. Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel[J]. Journal of Constructional Steel Research, 2017, 133: 418-433.
    [15] Du Y S, Chen Z H, Richard Liew J Y, et al. Rectangular concrete-filled steel tubular beam-columns using high-strength steel: experiments and design[J]. Journal of Constructional Steel Research, 2017, 131: 1-18.
    [16] Du Y S, Chen Z H, Xiong M X. Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel[J]. Construction and Building Materials, 2016, 125: 856-872.
    [17] Hopperstad O S, B?rvik T, Langseth M, et al. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments[J]. European Journal of Mechanics - A/Solids, 2003, 22(1): 1-13.
    [18] Brünig M, Chyra O, Albrecht D, et al. A ductile damage criterion at various stress triaxialities[J]. International Journal of Plasticity, 2008, 24(10): 1731-1755.
    [19] Mirone G. Role of stress triaxiality in elastoplastic characterization and ductile failure prediction[J]. Engineering Fracture Mechanics, 2007, 74(8): 1203-1221.
    [20] Yang B, Tan K H. Numerical analyses of steel beam-column joints subjected to catenary action[J]. Journal of Constructional Steel Research, 2012, 70: 1-11.
    [21] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018..Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of steel structure: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2018.(in Chinese)
    [22] Li L, Wang W, Teh L H, et al. Effects of span-to-depth ratios on moment connection damage evolution under catenary action[J]. Journal of Constructional Steel Research, 2017, 139: 18-29.
    [23] Sabol T A. Seismic design criteria for new steel moment frame buildings[C]//Structures 2001. Washington, D.C. USA. Reston, VA: American Society of Civil Engineers, 2001.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戎贤,许秀晨,杜颜胜.下栓接贯通隔板-上焊接外环板节点抗连续倒塌性能数值模拟分析[J].重庆大学学报,2023,46(10):71-85.

复制
分享
文章指标
  • 点击次数:209
  • 下载次数: 532
  • HTML阅读次数: 131
  • 引用次数: 0
历史
  • 收稿日期:2021-05-21
  • 在线发布日期: 2023-11-06
文章二维码