经济周期的有序样本最优分割算法及实证研究
作者:
作者单位:

云南民族大学 管理学院,昆明 650500

作者简介:

张强劲(1977—),男,副教授,博士后,主要从事运筹学、最优化算法研究,(E-mail)3177922623@qq.com。

通讯作者:

晏致涛,男,博士,教授,(E-mail)yanzhitao@cqu.edu.cn。

中图分类号:

F224.3

基金项目:

国家自然科学基金项目(71963037);云南省哲学社会科学创新团队(2023CX05)。


Optimal segmentation algorithm and empirical research for ordered samples in economic cycles
Author:
Affiliation:

School of Management, Yunnan Minzu University, Kunming 650500, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (71963037), and Yunnan Provincial Philosophy and Social Science Innovation Team (2023CX05).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    经济周期的阶段划分属于聚类问题中特殊的类型,需要对有序的时间序列样本进行分割,而经济周期的有序阶段划分则是研究经济周期相关问题的基础工作。文中构建以国内生产总值(gross domestic product, GDP)和居民消费价格指数(consumer price index, CPI)为基础数据的经济发展指标向量,提出针对经济周期阶段划分的有序样本最优分割算法,并分别选取美国1948年第三季度至2008年第二季度和日本1971年第三季度至2008年第二季度的数据为样本,动态分析算法的精度趋势和最优分割效果,为经济周期的阶段划分提供一种高效、简洁的算法。

    Abstract:

    Clustering often plays a foundational role in solving practical problems. The partitioning of economic cycles into stages represents a specialized clustering challenge, requiring the segmentation of sequential time series samples. The orderly division of economic cycle stages is fundamental to studying problems related to economic fluctuations. This paper presents an economic development indicator vector based on data from the gross domestic product(GDP)and consumer price index of residents(CPI). It introduces an optimal segmentation algorithm for ordered samples to partition economic cycle stages and analyzes the algorithm’s accuracy trend and optimal segmentation effect using sample data from the 3rd quarter of 1948 to the 2nd quarter of 2008 of the United States, and from the 3rd quarter of 1971 to the 2nd quarter of 2008 of Japan. The study offers an efficient and concise algorithm for delineating economic cycle stages.

    图1 美国经济发展指标向量走势(1948C~2008B)Fig.1 The trend of the vector of economic development indicators in America (1948C~2008B)
    图2 日本经济发展指标向量走势(1971C~2008B)Fig.2 The trend of the vector of economic development indicators in Japan (1971C~2008B)
    图4 美国经济周期的有序样本最优分割结果(40~60类)Fig.4 Optimal segmentation results of ordered samples in America economic cycles (40~60 categories)
    图5 日本经济周期的有序样本最优分割结果(20~30类)Fig.5 Optimal segmentation results of ordered samples in Japan economic cycles (20 to 30 categories)
    参考文献
    [1] 李珍萍, 赵雨薇, 张煜炜. 共同配送选址-路径优化模型与算法[J]. 重庆大学学报, 2020, 43(1): 28-43.Li Z P, Zhao Y W, Zhang Y W. Optimization model and algorithm of location-routing for joint distribution[J]. Journal of Chongqing University, 2020, 43(1): 28-43.(in Chinese)
    [2] Wang Y, Assogba K, Liu Y, et al. Two-echelon location-routing optimization with time windows based on customer clustering[J]. Expert Systems with Applications, 2018, 104: 244-260.
    [3] 刘丽华. 档案管理中文本数据的增量多模态聚类方法[J]. 重庆大学学报, 2022, 45(5): 147-156.Liu L H. Incremental multi-modal clustering methods for text data in archives administration[J]. Journal of Chongqing University, 2022, 45(5): 147-156.(in Chinese)
    [4] 赵建军, 汪清, 由磊, 等. 基于信息传递和峰值聚类的自适应社区发现算法[J]. 重庆大学学报, 2018, 41(11): 76-83.Zhao J J, Wang Q, You L, et al. An adaptive community detection method based on information transfer and density peaks[J]. Journal of Chongqing University, 2018, 41(11): 76-83.(in Chinese)
    [5] 欧阳艳敏, 王长峰, 刘柳, 等. 基于改进自适应最优分割法的风险预警区间模型研究: 针对重大突发公共卫生事件[J]. 中国管理科学, 2022, 30(11): 196-206.Ouyang Y M, Wang C F, Liu L, et al. Study on the risk early warning interval model based on improved adaptive optimal partition method - large-scale public health emergency[J]. Chinese Journal of Management Science, 2022, 30(11): 196-206.(in Chinese)
    [6] 张强劲. 组织冗余对企业创新效率的门槛效应研究——来自高端制造企业的证据[J]. 云南民族大学学报(哲学社会科学版), 2022, 39(6): 153-157.Zhang Q J. Threshold effects of organizational slack on the innovation-related efficiency of enterprises—evidence from high-end manufacturing enterprises[J]. Journal of Yunnan Minzu University (Philosophy and Social Sciences Edition), 2022, 39(6): 153-157.(in Chinese)
    [7] 符璐, 吕王勇, 甘茂林. 成都市环境空气治理效应评价——基于有序样本聚类与分类检验模型[J]. 统计与信息论坛, 2015, 30(12): 79-83.Fu L, Lv W Y, Gan M L. Evaluation of Chengdu environment air management effect: based on the clustering and classification analysis on ordinal samples [J]. Statistics & Information Forum, 2015, 30(12): 79-83. (in Chinese)
    [8] 石建辉. 基于遗传算法的有序样本聚类及其应用[J]. 统计与决策, 2010(23): 19-21.Shi J H. Ordered sample clustering based on genetic algorithm and its application[J]. Statistics & Decision, 2010(23): 19-21.(in Chinese)
    [9] 李红, 孙秋碧. 我国金融服务产业集聚演化研究[J]. 统计与决策, 2013(13): 123-126.Li H, Sun Q B. Research on the agglomeration evolution of China’s financial services industry[J]. Statistics & Decision, 2013(13): 123-126.(in Chinese)
    [10] 魏浩, 李晓庆. 中国进口贸易的技术结构及其影响因素研究[J]. 世界经济, 2015, 38(8): 56-79.Wei H, Li X Q. Study on the technical structure of China’s import trade and its influencing factors[J]. The Journal of World Economy, 2015, 38(8): 56-79.(in Chinese)
    [11] 张敬, 朱相丽. 基于多源数据的领域主题演化路径分析[J]. 图书情报工作, 2023, 67(14): 94-108.Zhang J, Zhu X L. Analysis of domain topic evolution path based on multi-source data[J]. Library and Information Service, 2023, 67(14): 94-108.(in Chinese)
    [12] 张柳, 王晰巍, 黄博, 等. 基于LDA模型的新冠肺炎疫情微博用户主题聚类图谱及主题传播路径研究[J]. 情报学报, 2021, 40(3): 234-244.Zhang L, Wang X W, Huang B, et al. Research on the topic clustering graph and the transmission path of micro-blogging users amid COVID-19 based on the LDA model[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(3): 234-244.(in Chinese)
    [13] 拉斯·特维德. 逃不开的经济周期:历史、理论与投资现实[M]. 董裕平译. 北京: 中信出版社, 2012.Tvede L. Business cycles: history, theory and investment reality [M]. Dong Y P, trans. Beijing: China CITIC Press, 2012. (in Chinese)
    [14] Caunedo J. Aggregate fluctuations and the industry structure of the US economy[J]. European Economic Review, 2020, 129: 1-22.
    [15] Jannsen N, Potjagailo G, Woltersa M H. Monetary policy during financial crises: is the transmission mechanism impaired [J]. Journal of Central Banking, 2019, 15(4): 81-126.
    [16] Chionis D, Mitropoulos F. Sarantidis A. Business cycles and macroeconomic asymmetries: new evidence from Eurozone and European countries [J]. International Journal of Finance and Economics, 2021, 26(4): 5977-5996.
    [17] Beck K. What drives business cycle synchronization? BMA results from the European Union[J]. Baltic Journal of Economics, 2019, 19(2): 248-275.
    [18] Servén L, Abate G D. Adding space to the international business cycle[J]. Journal of Macroeconomics, 2020, 65(9): 1-23.
    [19] Mejía-Reyes P, Díaz-Carre?o M á, Aroca P. Mexican states’ business cycles co-movement over the period 2000-2014: a panel data model estimation[J]. Growth and Change, 2019, 50(4): 1532-1567.
    [20] Shrawan A, Dubey A. Technology intensive trade and business cycle synchronisation: evidence from a panel threshold regression model for India[J]. The Journal of International Trade & Economic Development, 2021, 30(6): 906-929.
    [21] Begenau J, Salomao J. Firm financing over the business cycle [J]. The Review of Financial Studies, 2019, 32(4): 1235-1274.
    [22] Dangl T, Wu Y C. Corporate investment over the business cycle [J]. Review of Finance, 2016, 20(1): 337-371.
    [23] 周泽将, 汪帅, 王彪华. 经济周期与金融风险防范——基于股价崩盘视角的分析[J]. 财经研究, 2021, 47(6): 108-123.Zhou Z J, Wang S, Wang B H. Economic cycle and financial risk prevention: an analysis from the perspective of stock price crash risk [J]. Journal of Finance and Economics, 2021, 47(6): 108-123. (in Chinese)
    [24] Fidrmuc J, Korhonen I. Meta-analysis of Chinese business cycle correlation[J]. Pacific Economic Review, 2018, 23(3): 385-410.
    [25] 姚曦, 续继. 技术进步、经济周期与制造业岗位丢失[J]. 世界经济, 2022, 45(5): 81-112.Yao X, Xu J. Technological progress, economic cycle and manufacturing job loss[J]. The Journal of World Economy, 2022, 45(5): 81-112.(in Chinese)
    [26] Ramey V A,Zubairy S. Government spending multipliers in good times and in bad: evidence from US historical data [J]. Journal of Political Economy, 2018, 126(2): 850-901.
    [27] 付一婷, 陈志宏, 孙玉祥. 经济周期、财政政策周期和货币政策周期的时变关联机制研究[J]. 金融发展研究, 2023(2): 3-15.Fu Y T, Chen Z H, Sun Y X. A study on the time-varying correlation mechanism of economic cycle, fiscal policy cycle and monetary policy cycle[J]. Journal of Financial Development Research, 2023(2): 3-15.(in Chinese)
    [28] 刘金全, 陈润东. 经济周期和财政政策周期交互视角下的乘数效应研究: 基于全国层面和省级层面的分析[J]. 财经研究, 2022, 48(3): 109-123.Liu J Q, Chen R D. Research on the multiplier effect from the perspective of interaction between business cycle and fiscal cycle: based on the analysis at the national and provincial levels[J]. Journal of Finance and Economics, 2022, 48(3): 109-123.(in Chinese)
    [29] 陈诗一, 陈登科. 经济周期视角下的中国财政支出乘数研究[J]. 中国社会科学, 2019(8): 111-129, 206.Chen S Y, Chen D K. A study of China’s fiscal expenditure multiplier in the light of economic cycles[J]. Social Sciences in China, 2019(8): 111-129, 206.(in Chinese)
    [30] Halling M, Yu J, Zechner J. Leverage dynamics over the business cycle[J]. Journal of Financial Economics, 2016, 122(1): 21-41.
    [31] 连玉君, 彭镇, 蔡菁, 等. 经济周期下资本结构同群效应研究[J]. 会计研究, 2020, 11: 85-97.Lian Y J, Peng Z, Cai J, et al. Peer effect of capital structure in business cycle [J]. Accounting Research, 2020, 11: 85-97. (in Chinese)
    [32] 张强劲, 陈忠华. 基于GRNN算法的潜在产出与产出缺口估算模型[J]. 重庆大学学报, 2016, 39(6): 148-154.Zhang Q J, Chen Z H. Potential output and output gap model based on GRNN algorithm[J]. Journal of Chongqing University, 2016, 39(6): 148-154.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张强劲.经济周期的有序样本最优分割算法及实证研究[J].重庆大学学报,2024,47(7):140-148.

复制
分享
文章指标
  • 点击次数:297
  • 下载次数: 532
  • HTML阅读次数: 66
  • 引用次数: 0
历史
  • 收稿日期:2023-10-10
  • 在线发布日期: 2024-08-15
文章二维码