基于互层岩体的非定常黏弹塑性蠕变模型及有限元分析
作者:
作者单位:

1.长安大学 公路学院,西安 710064;2.中交第一公路勘察设计研究院有限公司,西安 710065

作者简介:

胡涛涛(1985—),男,博士,主要从事岩体力学方面的研究,(E-mail) tthu@chd.edu.cn。

中图分类号:

TU458.4

基金项目:

国家自然科学基金资助项目(51908052, 4183286);中国博士后基金资助项目(2019M653518);陕西省自然科学基础研究计划资助项目(2022JM-203);长安大学中央高校基本科研业务费专项资金资助(300102213211)。


Non-constant viscoelastic-plastic creep model and finite element analysis based on interbedded rock mass
Author:
Affiliation:

1.School of Highway, Chang’an University, Xi’an 710064, P. R. China;2.CCCC First Highway Consultants Co.,Ltd., Xi’an 710065, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (51908052, 4183286), China Postdoctoral Science Foundation (2019M653518), Natural Science Basic Research Program of Shaanxi (2022JM-203), and the Fundamental Research Funds for the Central Universities, CHD (300102213211).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为研究互层岩体在考虑时效变形作用时的蠕变特性,提出了一种考虑应力、应变阈值的非定常黏弹塑性五元件模型。该模型能够同时描述岩体的瞬时弹性应变、黏弹性蠕变、线性黏塑性蠕变和非线性黏塑性蠕变(加速蠕变),推导得出了其在三维应力状态下的蠕变方程;基于ABAQUS有限元软件完成了UMAT子程序的研发,并通过对比岩体的室内蠕变试验与该模型数值模拟结果来验证模型的适用性。结果表明:蠕变试验结果与数值计算结果相吻合,非定常黏弹塑性模型不仅可以精确描述减速蠕变和稳态蠕变过程,还可以较好地描述岩体的加速蠕变过程,从而验证了该模型的适用性与有效性。

    Abstract:

    To study the creep characteristics of interbedded rock mass when considering the effect of time-dependent deformation. This paper proposes a non-constant viscoelastic plastic five-element model considering stress and strain thresholds. The model can simultaneously describe the instantaneous elastic strain, viscoelastic creep, linear viscoplastic creep and nonlinear viscoplastic creep (accelerated creep) of the rock, and derives its creep equation under the three-dimensional stress state. Based on the ABAQUS finite element software, the development of the UMAT subroutine was completed, and the applicability of the model was verified by comparing the indoor creep test of the rock with the numerical simulation results of the model. The results show that the results of the creep test are consistent with the results of the numerical calculations. The non-constant viscoelastic-plastic novelty model can not only accurately describe the decelerated creep and steady-state creep processes, but also can better describe the accelerated creep process of rocks. This verifies the applicability and effectiveness of the model.

    参考文献
    [1] 孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.Sun J. Rheology of geotechnical materials and its engineering application[M]. Beijing: China Architecture & Building Press, 1999.(in Chinese)
    [2] Xiao C, Zheng H C, Hou X L, et al. A stability study of goaf based on mechanical properties degradation of rock caused by rheological and disturbing loads[J]. International Journal of Mining Science and Technology, 2015, 25(5): 741-747.
    [3] Lin H, Cao P, Fang J Q, et al. Confirmation on reasonable timbering time for tunnel in rheological cases of III-rock mass[J]. Disaster Advances, 2012, 5: 220-225.
    [4] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6): 1081-1106.Sun J. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1081-1106.(in Chinese)
    [5] 杨圣奇, 徐卫亚, 谢守益, 等. 饱和状态下硬岩三轴流变变形与破裂机制研究[J]. 岩土工程学报, 2006, 28(8): 962-969.Yang S Q, Xu W Y, Xie S Y, et al. Studies on triaxial rheological deformation and failure mechanism of hard rock in saturated state[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 962-969.(in Chinese)
    [6] 马春驰, 李天斌, 孟陆波, 等. 节理岩体等效流变损伤模型及其在卸载边坡中的应用[J]. 岩土力学, 2014, 35(10): 2949-2957.Ma C C, Li T B, Meng L B, et al. Equivalent rheological damage model of jointed rock and its application to unloading slope[J]. Rock and Soil Mechanics, 2014, 35(10): 2949-2957.(in Chinese)
    [7] 丁秀丽, 付敬, 刘建, 等. 软硬互层边坡岩体的蠕变特性研究及稳定性分析[J]. 岩石力学与工程学报, 2005, 24(19): 3410-3418.Ding X L, Fu J, Liu J, et al. Study on creep behavior of alternatively distributed soft and hard rock layers and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3410-3418.(in Chinese)
    [8] Griggs D. Creep of rocks[J]. The Journal of Geology, 1939, 47(3): 225-251.
    [9] Fujii Y, Kiyama T, Ishijima Y, et al. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 323-337.
    [10] 徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩石力学与工程学报, 2006, 25(3): 433-447.Xu W Y, Yang S Q, Chu W J. Nonlinear viscoelasto-plastic rheological model (hohai model) of rock and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 433-447.(in Chinese)
    [11] 王闫超, 晏鄂川, 丛璐, 等. 巴东组泥岩非线性流变本构模型研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3362-3373.Wang Y C, Yan E C, Cong L, et al. Study on creep constitutive model of Badong formation mudstone under triaxial creep test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3362-3373.(in Chinese)
    [12] 张亮亮, 王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020, 42(6): 1085-1092.Zhang L L, Wang X J. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092.(in Chinese)
    [13] Song F, Wang H N, Jiang M J. Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions[J]. Applied Mathematical Modelling, 2018, 55: 109-130.
    [14] Ren Y, Yang H T. Equivalent analysis of orthogonal viscoelastic jointed rock via an adaptive algorithm in time domain[J]. Finite Elements in Analysis and Design, 2010, 46(10): 875-888.
    [15] 褚卫江, 徐卫亚, 杨圣奇, 等. 基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J]. 岩土力学, 2006, 27(11): 2005-2010.Chu W J, Xu W Y, Yang S Q, et al. Secondary development of a viscoelasto-plastic rheological constitutive model of rock based on FLAC3D[J]. Rock and Soil Mechanics, 2006, 27(11): 2005-2010.(in Chinese)
    [16] 夏才初, 王晓东, 许崇帮, 等. 用统一流变力学模型理论辨识流变模型的方法和实例[J]. 岩石力学与工程学报, 2008, 27(8): 1594-1600.Xia C C, Wang X D, Xu C B, et al. Method to identify rheological models by unified rheological model theory and case study[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1594-1600.(in Chinese)
    [17] 王宇, 李建林, 邓华锋, 等. 软岩三轴卸荷流变力学特性及本构模型研究[J]. 岩土力学, 2012, 33(11): 3338-3344.Wang Y, Li J L, Deng H F, et al. Study on rheological properties and constitutive model of soft rock under triaxial unloading[J]. Rock and Soil Mechanics, 2012, 33(11): 3338-3344.(in Chinese)
    [18] 蒋昱州, 朱杰兵, 王瑞红. 软硬互层岩体卸荷蠕变力学特性试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 778-784.Jiang Y Z, Zhu J B, Wang R H. Experimental study of unloading creep mechanical properties of alternatively distributed soft and hard rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 778-784.(in Chinese)
    [19] Zhao Y L, Wang Y X, Wang W J, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 66-75.
    [20] Qu P F, Zhu Q Z, Sun Y F. Elastoplastic modelling of mechanical behavior of rocks with fractional-order plastic flow[J]. International Journal of Mechanical Sciences, 2019, 163: 105102.
    [21] Guo Z, Liu X, Zhu Z, et al. Model test and numerical analysis about adjacent tunnel's interaction [J]. Disaster Advances, 2012, 5(4): 1377-1384.
    [22] Liu K, Chen S L, Gu X Q. Analytical and numerical analyses of tunnel excavation problem using an extended drucker-prager model[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1777-1790.
    [23] Ping C, Wen Y D, Wang Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences, 2016, 75(10): 900.
    [24] Zhang H B, Wang Z Y, Zheng Y L, et al. Study on tri-axial creep experiment and constitutive relation of different rock salt[J]. Safety Science, 2012, 50(4): 801-805.
    [25] 徐卫亚, 杨圣奇, 杨松林, 等. 绿片岩三轴流变力学特性的研究(I): 试验结果[J]. 岩土力学, 2005, 26(4): 531-537.Xu W Y, Yang S Q, Yang S L, et al. Investigation on triaxial rheological mechanical properties of greenschist specimen (I): experimental results[J]. Rock and Soil Mechanics, 2005, 26(4): 531-537.(in Chinese)
    [26] 徐卫亚, 杨圣奇, 谢守益, 等. 绿片岩三轴流变力学特性的研究(II): 模型分析[J]. 岩土力学, 2005, 26(5): 693-698.Xu W Y, Yang S Q, Xie S Y, et al. Investigation on triaxial rheological mechanical properties of greenschist specimen (II): model analysis[J]. Rock and Soil Mechanics, 2005, 26(5): 693-698.(in Chinese)
    [27] 李晓照, 戚承志, 邵珠山. 脆性岩石卸载流变失效的细观力学模型研究[J]. 应用基础与工程科学学报, 2019, 27(5): 1138-1148.Li X Z, Qi C Z, Shao Z S. Study on micromechanical model of unloading rheological failure in brittle rocks[J]. Journal of Basic Science and Engineering, 2019, 27(5): 1138-1148.(in Chinese)
    [28] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355.Qi Y J, Jiang Q H, Wang Z J, et al. 3d creep constitutive equation of modified nishihara model and its parameters identification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 347-355.(in Chinese)
    [29] Peirce D, Shih C F, Needleman A. A tangent modulus method for rate dependent solids[J]. Computers & Structures, 1984, 18(5): 875-887.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡涛涛,康志斌,陈建勋,胡雄,王栋.基于互层岩体的非定常黏弹塑性蠕变模型及有限元分析[J].重庆大学学报,2023,46(10):118-126.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-03
  • 在线发布日期: 2023-11-06
文章二维码