剪力墙构件恢复力模型在OpenSees中的应用
作者:
作者单位:

江南大学 环境与土木工程学院,江苏 无锡 214122

作者简介:

罗国胜(1994—),男,硕士研究生,主要从事混凝土结构抗震性能研究,(E-mail) 2942247750@qq.com。

通讯作者:

顾冬生,男,副教授,(E-mail)gussds@jiangnan.edu.cn。

中图分类号:

TU375.3

基金项目:

国家自然科学基金资助项目(51709129);江苏省自然科学基金资助项目(BK20131105)。


Shear wall component restoring force model in OpenSees
Author:
Affiliation:

School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (51709129), and Natural Science Foundation of Jiangsu Province (BK20131105).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了钢筋混凝土(RC)剪力墙弯矩-转角三折线骨架模型,给出了关键点的计算方法。计算了105片RC剪力墙的截面有效刚度和峰值转角,并与试验值对比,验证了模型的准确性。采用OpenSees软件中可以考虑强度与刚度退化的修正的 Ibarra-Medina-Krawinkler (ModIMK)滞回材料定义滞回规则,对钢筋混凝土剪力墙低周往复试验进行数值模拟与分析,模拟结果和试验非常吻合。与可以考虑弯剪耦合效应(shear-flexure interaction model, SFI)的模型的时程分析对比结果表明滞回模型可以有效预测框架剪力墙在地震作用下的响应。增量动力分析(incremental dynamic analysis, IDA)表明滞回模型可以有效预测剪力墙在地震作用下的倒塌行为,倒塌时的层间位移角比纤维模型小。

    Abstract:

    This paper proposes a moment-rotation tri-linear backbone curve model for reinforced concrete (RC) shear walls. Equations for predicting key points on the backbone curve are provided. The calculated sectional effective stiffness and ultimate drift ratio are compared with experimental results from 105 RC shear walls. The Modified Ibarra-Medina-Krawinkler (ModIMK) material in OpenSees software that considers the strength and stiffness degradation is used to define the hysteresis rules. Numerical simulation and analysis of low-cycle reciprocating tests on reinforced concrete shear walls are carried out, and the simulation results closely align with the test results. When compared to a model that considers the bending-shear coupling effect (SFI), our hysteretic model effectively predicts the response of the frame shear wall during earthquake events. Furthermore, dynamic incremental analysis (IDA) shows that our model can accurately predict the collapse behavior of shear walls during earthquakes, with inter-layer drift ratios during collapse being smaller than those in the fiber mode.

    参考文献
    [1] Naeim F, Lew M, Carpenter L D, et al. Performance of tall buildings in Santiago, Chile during the 27 February 2010 offshore Maule, Chile earthquake[J]. The Structural Design of Tall and Special Buildings, 2011, 20(1): 1-16.
    [2] Sritharan S, Beyer K, Henry R S, et al. Understanding poor seismic performance of concrete walls and design implications[J]. Earthquake Spectra, 2014, 30(1): 307-334.
    [3] Mazzoni S, McKenna F, Scott M H, et al. OpenSees command language manual[M]. California: The Regents of the University of California, 2006: 264.
    [4] Kolozvari K, Wallace J W. Practical nonlinear modeling of reinforced concrete structural walls[J]. Journal of Structural Engineering, 2016, 142(12): G4016001.
    [5] Lu X Z, Xie L L, Guan H, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees[J]. Finite Elements in Analysis and Design, 2015, 98: 14-25.
    [6] Abdullah S A, Wallace J W. Drift capacity of reinforced concrete structural walls with special boundary elements[J]. ACI Structural Journal, 2019, 116(1): 183-194.
    [7] 梁兴文, 赵花静, 邓明科. 考虑边缘约束构件影响的高强混凝土剪力墙弯矩-曲率骨架曲线参数研究[J]. 建筑结构学报, 2009, 30(S2): 62-67.Liang X W, Zhao H J, Deng M K. Moment-curvature relationship analysis of high-strength concrete shear wall with partially confined end-zones[J]. Journal of Building Structures, 2009, 30(S2): 62-67.(in Chinese)
    [8] 赵花静, 梁兴文, 宋璨. 高强混凝土剪力墙屈服位移计算方法[J]. 土木建筑与环境工程, 2014, 36(3): 80-85.Zhao H J, Liang X W, Song C. Yield displacement calculation method of high-strength concrete shear wall[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(3): 80-85.(in Chinese)
    [9] 张松, 吕西林, 章红梅. 钢筋混凝土剪力墙构件恢复力模型[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(4): 644-649.Zhang S, Lü X L, Zhang H M. Experimental and analytical studies on resilience models of RC shear walls[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(4): 644-649.(in Chinese)
    [10] 钱稼茹, 徐福江. 钢筋混凝土剪力墙基于位移的变形能力设计方法[J]. 清华大学学报(自然科学版), 2007, 47(3): 305-308.Qian J R, Xu F J. Displacement-based deformation capacity design method of RC cantilever walls[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(3): 305-308.(in Chinese)
    [11] 李宏男, 李兵. 钢筋混凝土剪力墙抗震恢复力模型及试验研究[J]. 建筑结构学报, 2004, 25(5): 35-42.Li H N, Li B. Experimental study on seismic restoring performance of reinforced concrete shear walls[J]. Journal of Building Structures, 2004, 25(5): 35-42.(in Chinese)
    [12] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. New York: Wiley, 1996.
    [13] 顾冬生, 吴刚. 地震荷载作用下FRP加固钢筋混凝土圆柱变形能力计算方法研究[J]. 工程力学, 2013, 30(1): 261-270.Gu D S, Wu G. Deformation capacity of FRP retrofitted circular concrete columns under simulated seismic loading[J]. Engineering Mechanics, 2013, 30(1): 261-270.(in Chinese)
    [14] Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: Wiley, 1992.
    [15] Li B, Xiang W Z. Effective stiffness of squat structural walls[J]. Journal of Structural Engineering, 2011, 137(12): 1470-1479.
    [16] Haselton C B, Liel A B, Taylor-Lange S C, et al. Calibration of model to simulate response of reinforced concrete beam-columns to collapse[J]. ACI Structural Journal, 2016, 113(6): 1141-1152.
    [17] Panagiotakos T B, Fardis M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135-148.
    [18] Alarcon C, Hube M A, de la Llera J C. Effect of axial loads in the seismic behavior of reinforced concrete walls with unconfined wall boundaries[J]. Engineering Structures, 2014, 73: 13-23.
    [19] Dazio A, Beyer K, Bachmann H. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls[J]. Engineering Structures, 2009, 31(7): 1556-1571.
    [20] 邓明科, 梁兴文, 刘清山. 横向约束钢筋新配筋方案高性能混凝土剪力墙抗震性能的试验研究[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(4):538-543.Deng M, Liang X, Yang K. Experimental study on seismic behavior of high performance concrete shear wall with new strategy of transverse confining stirrup[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2006, 38(4): 538-543. (in Chinese)
    [21] Cho S H, Tupper B, Cook W D, et al. Structural steel boundary elements for ductile concrete walls[J]. Journal of Structural Engineering, 2004, 130(5): 762-768.
    [22] Hube M A, Marihuén A, de la Llera J C, et al. Seismic behavior of slender reinforced concrete walls[J]. Engineering Structures, 2014, 80: 377-388.
    [23] Liu H. Effect of concrete strength on the response of ductile shear walls[D]. Montreal, Canada: McGill University, 2004.
    [24] Lu Y Q, Henry R S, Gultom R, et al. Cyclic testing of reinforced concrete walls with distributed minimum vertical reinforcement[J]. Journal of Structural Engineering, 2017, 143(5): 04016225.
    [25] Lu Y Q, Gultom R J, Ma Q Q, et al. Experimental validation of minimum vertical reinforcement requirements for ductile concrete walls[J]. ACI Structural Journal, 2018, 115(4): 1115-1130.
    [26] Oesterle R G, Fiorato A E, Johal L S, et al. Earthquake resistant structural walls-tests of isolated walls[J]. Research and Development Construction Technology Laboratories, Portland Cement Association, 1976: 1-321.
    [27] Oh Y H, Han S W, Lee L H. Effect of boundary element details on the seismic deformation capacity of structural walls[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(8): 1583-1602.
    [28] Segura C L, Wallace J W. Seismic performance limitations and detailing of slender reinforced concrete walls[J]. ACI Structural Journal, 2018, 115(3): 849-859.
    [29] Shegay A V, Motter C J, Elwood K J, et al. Impact of axial load on the seismic response of rectangular walls[J]. Journal of Structural Engineering, 2018, 144(8): 04018124.
    [30] Su R K L, Wong S M. Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio[J]. Engineering Structures, 2007, 29(8): 1957-1965.
    [31] Thomsen J H IV, Wallace J W. Displacement-based design of slender reinforced concrete structural walls-experimental verification[J]. Journal of Structural Engineering, 2004, 130(4): 618-630.
    [32] Tran T A, Wallace J W. Cyclic testing of moderate-aspect-ratio reinforced concrete structural walls[J]. ACI Structural Journal, 2015, 112(6): 653-665.
    [33] Zhang Y, Wang Z. Seismic behavior of reinforced concrete shear walls subjected to high axial loading[J]. Structural Journal, 2000, 97(5): 739-750.
    [34] Ali A, Wight J K. RC structural walls with staggered door openings[J]. Journal of Structural Engineering, 1991, 117(5): 1514-1531.
    [35] Pilakoutas K, Elnashai A S. Cyclic behavior of reinforced concrete cantilever walls, Part I: Experimental results[J]. ACI structural journal, 1995, 92(3): 271-281.
    [36] Ghorbani-Renani I, Velev N, Tremblay R, et al. Modeling and testing influence of scaling effects on inelastic response of shear walls[J]. ACI Structural Journal, 2009, 106(3): 358-367.
    [37] Salonikios T N, Kappos A J, Tegos I A, et al. Cyclic load behavior of low-slenderness reinforced concrete walls: failure modes, strength and deformation analysis, and design implications[J]. ACI Structural Journal, 2000, 97(1): 132-141.
    [38] 章红梅, 吕西林, 杨雪平, 等. 边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J]. 结构工程师, 2008, 24(5): 100-104, 118.Zhang H M, Lu X L, Yang X P, et al. Influence of boundary stirrup on seismic behavior of reinforced concrete shear walls[J]. Structural Engineers, 2008, 24(5): 100-104, 118.(in Chinese)
    [39] 邓明科, 梁兴文, 张思海. 高性能混凝土剪力墙延性性能的试验研究[J]. 建筑结构学报, 2009, 30(S1): 139-143.Deng M K, Liang X W, Zhang S H. Experimental study on ductility of high performance concrete shearwall[J]. Journal of Building Structures, 2009, 30(S1): 139-143.(in Chinese)
    [40] 刘志伟. 高性能混凝土剪力墙抗震性能研究[D].上海:同济大学,2003.LIU Z W. Study on the seismic performance of high performance reinforced concrete shear wall[D]. Shanghai: Tongji University, 2003.(in Chinese)
    [41] 章红梅. 剪力墙结构基于性态的抗震设计方法研究[D]. 上海: 同济大学,2007.Zhang Hongmei.Study on the performance-based seismic design method for shear wall structures[D]. Shanghai: Tongji University, 2007.(in Chinese)
    [42] Haselton C B, Liel A B, Lange S C, et al. Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings[J]. Berkeley: Pacific Earthquake Engineering Research Center, 2008(3): 152.
    [43] Shegay A V, Motter C J, Elwood K J, et al. Deformation capacity limits for reinforced concrete walls[J]. Earthquake Spectra, 2019, 35(3): 1189-1212.
    [44] 鲁懿虬, 黄靓. 端部约束箍筋对受弯破坏RC剪力墙变形能力的影响[J]. 工程力学, 2015, 32(4): 85-92.Lu Y Q, Huang L. Influence of confining stirrups on the deformation capacity of rc walls with flexure failure[J]. Engineering Mechanics, 2015, 32(4): 85-92.(in Chinese)
    [45] Ibarra L F, Krawinkler H. Global collapse of frame structures under seismic excitations[M]. Berkeley, Calif: Pacific Earthquake Engineering Research Center, 2005.
    [46] Lu X Z, Xie L L, Guan H, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees[J]. Finite Elements in Analysis and Design, 2015, 98: 14-25.
    [47] Kolozvari K I. Analytical modeling of cyclic shear-flexure interaction in reinforced concrete structural walls[D]. Los Angeles: University of California, 2013.
    [48] Shegay A. Seismic performance of reinforced concrete walls designed for ductility[D]. Auckland: ResearchSpace, 2019.
    [49] Vamvatsikos D, Cornell C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
    [50] Marafi N A, Ahmed K A, Lehman D E, et al. Variability in seismic collapse probabilities of solid-and coupled-wall buildings[J]. Journal of Structural Engineering, 2019, 145(6): 04019047.
    相似文献
    引证文献
引用本文

罗国胜,顾冬生.剪力墙构件恢复力模型在OpenSees中的应用[J].重庆大学学报,2023,46(10):127-142.

复制
分享
文章指标
  • 点击次数:178
  • 下载次数: 655
  • HTML阅读次数: 66
  • 引用次数: 0
历史
  • 收稿日期:2023-02-09
  • 在线发布日期: 2023-11-06
文章二维码