电力电缆初期绝缘故障检测方法综述
作者:
作者单位:

1.国网浙江省电力有限公司,杭州 310000;2.重庆大学 输配电装备及系统安全与新技术国家重点 实验室,重庆 400044;3.济南能源集团,济南 250011;4.浙江省送变电工程有限公司,杭州 310020

作者简介:

任广振(1983—),男,高级工程师,主要从事电力电缆运维检修,配网运维检修等,(E-mail)xyz981005@163.com。

通讯作者:

王云鹤,男,博士研究生,(E-mail)1542253671@qq.com。

中图分类号:

TM726.4

基金项目:

国网浙江省电力有限公司科技项目(5211DS20007P)。


Review of incipient insulation fault detection methods for power cables
Author:
Affiliation:

1.State Grid Zhejiang Electric Power Corporation, Hangzhou 310000, P. R. China;2.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China;3.Jinan Energy Group,Jinan 250011, P. R. China;4.Zhejiang Power Transmission and Transformation Engineering Co., Ltd., Hangzhou 310020, P. R. hina

Fund Project:

Supported by Scientific and Technical Funds of Zhejiang Electric Power Corporation (5211DS20007P).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    严重的电力电缆局部绝缘缺陷会导致显著的电压电流扰动,准确检测出这种电缆初期故障产生的扰动,可以对即将发生永久故障的电力电缆进行及时的运维处理,防止无计划停电的发生。文中对现有相关研究进行全面综述,归纳现场收集到的各种电缆局部缺陷导致的电压电流扰动波形及波形特征;对现有文献报道的初期故障检测方法,按照其检测原理和使用的检测数据类型,从暂态电力扰动的时频特征阈值法和人工智能方法两个角度对检测方法进行综述,同时对不同方法进行分析和评价。基于现有研究成果,对电缆初期故障在线检测技术的进一步研究提出建议。

    Abstract:

    Serious local insulation defects in power cables can cause distinct voltage and current disturbances. Precisely identifying these disturbances empowers utility companies to proactively manage cable maintenance and prevent unexpected power outages. This paper presents a comprehensive review of related research, detailing voltage and current disturbance waveforms across different systems. It categorizes existing incipient fault detection methods based on detection principles and data types, distinguishing between time-frequency characteristic threshold-based and artificial intelligence-based methods for transient power disturbances analysis. The study conducts a thorough comparison and evaluation of these methods. Drawing from existing research, recommendations are provided for further research on online detection technology for cable incipient faults.

    参考文献
    [1] 赵爱华, 李伟, 叶剑涛, 等. 超声波局部放电检测法在电缆终端中的应用[J]. 重庆大学学报, 2014, 37(6): 112-118.Zhao A H, Li W, Ye J T, et al. Application of ultrasonic detection for partial discharge to cable terminals [J]. Journal of Chongqing University, 2014, 37(6): 112-118. (in Chinese)
    [2] 王昱皓, 周凯, 汪先进, 等. 基于改进时频域反射法的电力电缆局部缺陷定位[J]. 中国电机工程学报, 2021, 41(7): 2584-2594.Wang Y H, Zhou K, Wang X J, et al. Power cable defects location based on improved time-frequency domain reflectometry [J]. Proceedings of the CSEE, 2021, 41(7): 2584-2594. (in Chinese)
    [3] Kojovic L A, Williams C WJr. Sub-cycle overcurrent protection for self-clearing faults due to insulation breakdown [C]//52 Annual Texas A&M Relay Conference. 1999: 1-12.
    [4] Stringer N T, Kojovic L A. Prevention of underground cable splice failures[J]. IEEE Transactions on Industry Applications, 2001, 37(1): 230-239.
    [5] Pickett B, Elkin P, Benner C, et al. Reducing outages through improved protection, monitoring, diagnostics, and autorestoration in transmission substations(69 kV and above) [J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1327-1334.
    [6] Kulkarni S, Allen A J, Chopra S, et al. Waveform characteristics of underground cable failures [C]//IEEE PES General Meeting. IEEE, 2010: 1-8.
    [7] Kasztenny B, Voloh I, Jones C G, et al. Detection of incipient faults in underground medium voltage cables [C]//2008 61st Annual Conference for Protective Relay Engineers. IEEE, 2008: 349-366.
    [8] Moghe R, Mousavi M J, Stoupis J, et al. Field investigation and analysis of incipient faults leading to a catastrophic failure in an underground distribution feeder [C]//2009 IEEE/PES Power Systems Conference and Exposition. IEEE, 2009: 1-6.
    [9] Hamel A, Gaudreau A, Cote M. Intermittent arcing fault on underground low-voltage cables [J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1862-1868.
    [10] Deursen A V, Wouters P, Steennis F. Corrosion in low-voltage distribution networks and perspectives for online condition monitoring [J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1423-1431.
    [11] Rowland S M, Wang M. Fault development in wet, low voltage, oil-impregnated paper insulated cables [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2): 484-491.
    [12] Naseri F, Ghanbari T, Farjah E. Incipient fault monitoring of medium voltage UD-EPR power cable using Rogowski coil [C]//2015 International Congress on Electric Industry Automation. IEEE, 2015: 33-36.
    [13] 姚海燕, 张静, 留毅, 等. 基于多尺度小波判据和时频特征关联的电缆早期故障检测和识别方法[J]. 电力系统保护与控制, 2015, 43(9): 115-123.Yao H Y, Zhang J, Liu Y, et al. Method of cable incipient faults detection and identification based on multi-scale wavelet criterions and time-frequency feature association [J]. Power System Protection and Control, 2015, 43(9): 115-123. (in Chinese).
    [14] Huang M, Wu Q, Han X, et al. Detection of incipient faults in distribution cables based on mathematical morphology [C]//2019 9th International Conference on Power and Energy Systems (ICPES). IEEE, 2019: 1-6.
    [15] Sidhu T S, Xu Z. Detection of incipient faults in distribution underground cables [J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1363-1371.
    [16] Ghanbari T. Kalman filter based incipient fault detection method for underground cables [J]. IET Generation, Transmission & Distribution, 2015, 9(14): 1988-1997.
    [17] Samet H, Tajdinian M, Khaleghian S, et al. A statistical-based criterion for incipient fault detection in underground power cables established on voltage waveform characteristics [J]. Electric Power Systems Research, 2021, 197: 107303.
    [18] Samet H, Khaleghian S, Tajdinian M, et al. A similarity-based framework for incipient fault detection in underground power cables [J]. International Journal of Electrical Power & Energy Systems, 2021, 133: 107309.
    [19] Zhang W, Xiao X, Zhou K, et al. Multicycle incipient fault detection and location for medium voltage underground cable [J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1450-1459.
    [20] 胡婧, 周洋. 基于零序电压小波变换的小电流接地系统电缆早期故障检测[J]. 内蒙古电力技术, 2021, 39(2): 1-6.Hu J, Zhou Y. Cable incipient fault detection for non-solidly grounding system based on zero sequence voltage wavelet transform [J]. Inner Mongolia Electric Power, 2021, 39(2): 1-6. (in Chinese).
    [21] 楚恬歆, 张文海, 瞿科, 等. 基于复合判据的小电流接地系统接地型早期故障检测[J]. 高电压技术, 2022, 48(3): 1022-1031.Chu T X, Zhang W H, Qu K, et al. Grounded incipient fault detection based on compound criterion in non-solidly grounding system [J]. High Voltage Engineering, 2022, 48(3): 1022-1031. (in Chinese)
    [22] 瞿科, 张文海, 肖先勇, 等. 基于波形衰减因子的电缆接头绝缘早期故障状态监测[J]. 高电压技术, 2022, 48(1): 318-327.Qu K, Zhang W H, Xiao X Y, et al. Condition monitoring for incipient faults of cable joint insulation based on waveform attenuation factor [J]. High Voltage Engineering, 2022, 48(1): 318-327. (in Chinese)
    [23] Kim C J, Lee S J, Kang S H. Evaluation of feeder monitoring parameters for incipient fault detection using laplace trend statistic [J]. IEEE Transactions on Industry Applications, 2004, 40(6): 1718-1724.
    [24] Moghe R, Mousavi M J. Trend analysis techniques for incipient fault prediction [C]//2009 IEEE Power & Energy Society General Meeting. IEEE, 2009: 1-8.
    [25] Mousavi M J, Butler-Purry K L. Detecting incipient faults via numerical modeling and statistical change detection [J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1275-1283.
    [26] Almalki M M, Hatziadoniu C J. Classification of many abnormal events in radial distribution feeders using the complex morlet wavelet and decision trees [J]. Energies, 2018, 11(3): 546.
    [27] Mishra S, Swain S C, Naik N B. Tree based incipient fault identification in underground cable [C]//2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology. IEEE, 2021: 1-4.
    [28] 李胜辉, 白雪, 董鹤楠, 等. 基于平稳小波变换与随机森林的电缆早期故障识别方法[J]. 电工电能新技术, 2020, 39(3): 40-48.Li S H, Bai X, Dong H N, et al. Cable incipient fault identification based on stationary wavelet transform and random forest [J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(3): 40-48. (in Chinese).
    [29] Mousavi M J, Butler-Purry K L. A novel condition assessment system for underground distribution applications[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1115-1125.
    [30] Faisal M F, Mohamed A, Shareef H. Prediction of incipient faults in underground power cables utilizing S-transform and support vector regression[J]. International Journal on Electrical Engineering and Informatics, 2012, 4(2): 186-201.
    [31] Chang G W, Hong Y H, Li G Y. A hybrid intelligent approach for classification of incipient faults in transmission network [J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1785-1794.
    [32] Butler-Purry K L, Cardoso J. Characterization of underground cable incipient behavior using time-frequency multi-resolution analysis and artificial neural networks [C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. IEEE, 2008: 1-11.
    [33] 戴铭. 10kV地下电缆早期故障检测与识别方法探讨[D]. 成都: 西南交通大学, 2012.Dai M. Discussion methods of incipient fault detection and identification in 10kV underground cables [D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [34] Jannati M, Vahidi B, Hosseinian S H. Incipient faults monitoring in underground medium voltage cables of distribution systems based on a two-step strategy[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1647-1655.
    [35] 汪颖, 孙建风, 肖先勇, 等. 基于优化卷积神经网络的电缆早期故障分类识别[J]. 电力系统保护与控制, 2020, 48(7): 10-18.Wang Y, Sun J F, Xiao X Y, et al. Cable incipient fault classification and identification based on optimized convolution neural network[J]. Power System Protection and Control, 2020, 48(7): 10-18. (in Chinese).
    [36] Deng J, Zhang W, Yang X. Recognition and classification of incipient cable failures based on variational mode decomposition and a convolutional neural network[J]. Energies, 2019, 12(10): 2005.
    [37] 徐子弘, 季天瑶, 邓伟民, 等. 基于AE和GRU神经网络的电缆早期故障检测和识别方法[J]. 广东电力, 2020, 33(9): 27-34.Xu Z H, Ji T Y, Deng W M, et al. Detection and identification of cable incipient fault based on autoencoder and GRU neural network [J]. Guangdong Electric Power, 2020, 33(9): 27-34. (in Chinese).
    [38] 汪颖, 卢宏, 杨晓梅, 等. 堆叠自动编码器与S变换相结合的电缆早期故障识别方法[J]. 电力自动化设备, 2018, 38(8): 117-124.Wang Y, Lu H, Yang X M, et al. Cable incipient fault identification based on stacked autoencoder and S-transform [J]. Electric Power Automation Equipment, 2018, 38(8): 117-124. (in Chinese).
    [39] 邵宝珠, 李胜辉, 白雪, 等. 非负约束自动编码器在电缆早期故障识别中的应用[J]. 电力系统保护与控制, 2019, 47(2): 16-23.Shao B Z, Li S H, Bai X, et al. Application of nonnegative constraint autoencoder in cable incipient fault identification [J]. Power System Protection and Control, 2019, 47(2): 16-23. (in Chinese).
    [40] Wang Y, Lu H, Xiao X, et al. Cable incipient fault identification using restricted Boltzmann machine and stacked autoencoder [J]. IET Generation Transmission & Distribution, 2020, 14(7): 1242-1250.
    [41] Liu N, Fan B, Xiao X, et al. Cable incipient fault identification with a sparse autoencoder and a deep belief network [J]. Energies, 2019, 12(18): 3424.
    [42] Xiong S, Liu Y, Fang J, et al. Incipient fault identification in power distribution systems via human-level concept learning [J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5239-5248.
    [43] Xu W, Huang Z, Xie X, et al. Synchronized waveforms–a frontier of data-based power system and apparatus monitoring, protection and control [J]. IEEE Transactions on Power Delivery, 2022, 37(1): 3-17.
    [44] Izadi M, Mohsenian-Rad H. Synchronous waveform measurements to locate transient events and incipient faults in power distribution networks [J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4295-4307.
    [45] Yang L. Fault location system for radial MV underground distribution cable networks [C]//2018 71st Annual Conference for Protective Relay Engineers (CPRE). IEEE, 2018: 1-6.
    [46] Shi S, Hu Z, Ma Z, et al. Travelling waves-based identification of sub-health condition of feeders in power distribution system [J]. IET Generation, Transmission & Distribution, 2018, 12(5): 1067-1073.
    [47] Zhang C, Kang X, Ma X, et al. On-line incipient faults detection in underground cables based on single-end sheath currents [C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference. IEEE, 2016: 795-799.
    [48] Cui T, Dong X, Bo Z, et al. Hilbert-transform-based transient/intermittent earth fault detection in noneffectively grounded distribution systems [J]. IEEE Transactions on Power Delivery, 2011, 26(1): 143-151.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任广振,王云鹤,曹俊平,陈维召,成城,雍静.电力电缆初期绝缘故障检测方法综述[J].重庆大学学报,2023,46(11):1-12.

复制
分享
文章指标
  • 点击次数:421
  • 下载次数: 1152
  • HTML阅读次数: 98
  • 引用次数: 0
历史
  • 收稿日期:2022-06-14
  • 在线发布日期: 2023-11-28
文章二维码