一种基于差分隐私的峰谷分时电价激励方案
作者:
作者单位:

1.国网四川省电力公司电力科学研究院,成都 610072;2.重庆大学 大数据与软件学院,重庆 400030

作者简介:

庞博(1994—),男,硕士,主要从事隐私计算应用研究,(Email)pang-bo@outlook.com。

通讯作者:

胡春强, 男,博士,教授,(Email)chu@cqu.edu.cn。

中图分类号:

TP311

基金项目:

国网四川省电力公司科技项目(SGSCDK00LYJS2200130)。


An incentive scheme of peak-valley price based on differential privacy
Author:
Affiliation:

1.Electric Power Research Institute of State Grid Sichuan Electric Power Company, Chengdu 610072, P. R. China;2.School of Big Data & Software Engineering, Chongqing University, Chongqing 400030, P. R. China

Fund Project:

Supported by State Grid Sichuan Power Company Science and Technology Project (SGSCDK00LYJS2200130).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对智能电网系统峰值负荷差值过大、电力供给短缺等问题,提出了基于差分隐私的峰谷分时电价激励方案。方案将差分隐私和峰谷分时电价模型进行结合,在保证用户数据隐私的前提下对峰谷分时电价的定价策略进行优化。通过施行差异化的电价策略对用户的用电行为进行引导,激励用户形成错峰用电习惯,进而实现电力系统整体用电负荷的均衡。最后,通过实验对引入差分隐私后的数据效用进行分析,并对所提机制的运行效果进行评估。实验表明,本方案在实现电网整体用电负荷削峰填谷的同时对用户的数据隐私进行了保护。

    Abstract:

    To solve the problems of significant peak load variations and power supply shortages within smart grid systems, this paper proposes an incentive scheme for peak and off-peak time-of-use (TOU) pricing based on differential privacy. The scheme integrates differential privacy with the peak-valley TOU model, optimizing pricing strategies while safeguarding user data privacy. Differentiated pricing schemes are implemented to influence users’ behavior of electricity consumption, encouraging off-peak consumption habits and achieving a balanced power load across the system. Experimental analysis assesses the data utility following the introduction of differential privacy, evaluating the operation effectiveness of the proposed mechanism. Results show that this scheme successfully achieves load balancing throughout the whole power network while protecting user data privacy.

    参考文献
    [1] 戴瑞海, 廖鸿图, 施亦治, 等. 分时电价下考虑需求响应的微电网经济调度方法[J]. 重庆大学学报, 2022, 45(1): 25-37.Dai R H, Liao H T, Shi Y Z, et al. Demand response economic dispatch method for microgrid based on the time-of-use rate[J]. Journal of Chongqing University, 2022, 45(1): 25-37.(in Chinese)
    [2] 李宇远, 于海洋. 基于群盲签名的智能电网隐私保护方案研究[J]. 自动化仪表, 2022, 43(6): 85-89.Li Y Y, Yu H Y. Research on privacy protection scheme of smart grid based on group blind signature[J]. Process Automation Instrumentation, 2022, 43(6): 85-89.(in Chinese)
    [3] He D, Kumar N, Zeadally S, et al. Efficient and privacy-preserving data aggregation scheme for smart grid against internal adversaries [J]. IEEE Transactions on Smart Grid, 2017, 8(5): 2411-2419.
    [4] Xue K P, Zhu B, Yang Q Y, et al. An efficient and robust data aggregation scheme without a trusted authority for smart grid[J]. IEEE Internet of Things Journal, 2020, 7(3): 1949-1959.
    [5] 陈倩, 刘云. 多维分解加噪算法在智能电网隐私保护中的优化[J]. 重庆大学学报, 2018, 41(9): 86-93.Chen Q, Liu Y. Optimization of multi-dimensional decomposition and plus noise algorithm in intelligent grid privacy protection[J]. Journal of Chongqing University, 2018, 41(9): 86-93.(in Chinese)
    [6] Shen H, Liu Y J, Xia Z, et al. An efficient aggregation scheme resisting on malicious data mining attacks for smart grid[J]. Information Sciences, 2020, 526: 289-300.
    [7] Wang S X, Zhang S T, Wang K. Multi-objective optimal operation of distributed energy storage considering user demand response under time-of-use price[J]. Electric Power Automation Equipment, 2020, 40: 125-132.
    [8] Xia Q,Yang Z F,Lai X W. Electricity market design based on temporal pricing of renewable capacity[J]. Power System Technology, 2022, 46(5):1771-1779.
    [9] Mohseni S, Brent A C, Kelly S, et al. Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation[J]. Applied Energy, 2021, 287: 116563.
    [10] Li Y Y, Li J X, He J J, et al. The real-time pricing optimization model of smart grid based on the utility function of the logistic function[J]. Energy, 2021, 224: 120172.
    [11] Liu Q, Ma L, Li L, et al. Optimal robust real-time pricing algorithm based on utility maximization for smart grid[C]//2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), April 23-25, 2021, Chongqing, China. IEEE, 2021: 836-841.
    [12] Jiao D X,Yu H X,Sun L. User incentive dynamic pricing decision-making method for electric heating load in peak-regulated virtual power plant[J]. Proceedings of the CSUEPSA, 2022, 34(7): 72-80, 87.
    [13] Pandey V, Wang E, Boyles S D. Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations[J]. Transportation Research Part C: Emerging Technologies, 2020, 119: 102715.
    [14] Lu R Z, Bai R C, Huang Y, et al. Data-driven real-time price-based demand response for industrial facilities energy management[J]. Applied Energy, 2021, 283: 116291.
    [15] 刘浩田, 陈锦, 朱熹, 等. 一种基于价格弹性矩阵的居民峰谷分时电价激励策略[J]. 电力系统保护与控制, 2021, 49(5): 116-123.Liu H T, Chen J, Zhu X, et al. An incentive strategy of residential peak-valley price based on price elasticity matrix of demand[J]. Power System Protection and Control, 2021, 49(5): 116-123.(in Chinese)
    [16] Qu X Y, Hui H X, Yang S C, et al. Price elasticity matrix of demand in power system considering demand response programs[J]. IOP Conference Series: Earth and Environmental Science, 2018, 121: 052081.
    [17] Mishra M K, Parida S K. A game theoretic approach for demand-side management using real-time variable peak pricing considering distributed energy resources[J]. IEEE Systems Journal, 2022, 16(1): 144-154.
    [18] Zhu H L, Ouahada K. A distributed real-time control algorithm for energy storage sharing[J]. Energy and Buildings, 2021, 230: 110478.
    [19] Wu X L, Yuan Q, Wang L. Multiobjective differential evolution algorithm for solving robotic cell scheduling problem with batch-processing machines[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 757-775.
    相似文献
    引证文献
引用本文

庞博,张凌浩,滕予非,常政威,唐超,胡春强,刘泽伟,王宝琳.一种基于差分隐私的峰谷分时电价激励方案[J].重庆大学学报,2023,46(11):56-68.

复制
分享
文章指标
  • 点击次数:413
  • 下载次数: 625
  • HTML阅读次数: 91
  • 引用次数: 0
历史
  • 收稿日期:2023-07-31
  • 在线发布日期: 2023-11-28
文章二维码