大功率MMC系统中子模块IGBT状态监测系统设计方法
作者:
作者单位:

1.国网重庆市电力公司市南供电分公司,重庆 401336;2.重庆大学 输变电装备技术全国重点实验室, 重庆 400044

作者简介:

罗丹(1991—),男,博士,主要从事器件可靠性研究,(E-mail)walluodan@163.com。

通讯作者:

黎昌盛,男,博士研究生,(E-mail)lichsh216@163.com。

中图分类号:

TM464

基金项目:

国家重点研发计划(2018YFB0905800);国家自然科学基金资助项目(51707024,5200070692);高等学校学科创新引智计划(111计划)资助项目(B08036)。


Design Method of IGBT Module Condition Monitoring System for Submodule in High Power MMC system
Author:
Affiliation:

1.Shinan Power Supply Branch Company of State Grid Chongqing Electric Power Company, Chongqing 401136, P. R. China;2.State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by the National Key Research and Development Program of China(2018YFB0905800), National Science Fund Subsidized Project(51707024, 5200070692) and National “111” Project(B08036).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    绝缘栅双极型晶体管(insulated gate bipolar transistor)是模块化多电平换流阀 (modular multi-level converter, MMC)中的关键部件之一,对其运行状态进行在线监测是保障MMC系统安全、可靠和经济运行的重要措施。针对MMC子模块中多芯片并联IGBT模块运行状态难以实时监测的问题,文中提出了基于模块壳温分布规律与老化状态映射关系的运行状态监测系统设计方法,以实现不同工况下IGBT模块状态的自适应评估和管理。首先,分析了MMC子模块中IGBT模块老化失效对热流的影响规律,甄选了壳温作为表征模块状态的特征参量。其次,建立了适用于不同工作点的基于神经网络的IGBT模块老化状态监测模型,并根据不同应用场景的需求偏好实现了对功率模块运行状态的表征和识别;最后,基于所提的状态监测系统设计方法在MMC测试平台上验证了方法可行性和有效性。文中所提方法为解决大功率工况下MMC子模块中IGBT模块的状态监测问题提供了新的思路,为系统的运行维护提供了实用、有效的解决方案。

    Abstract:

    The insulated gate bipolar transistor (IGBT) module plays a pivotal role in the modular multilevel converter (MMC), making online monitoring essential for ensuring the MMC system’s safety, reliability, and cost-effectiveness. Addressing the challenge of real-time monitoring for multi-chip parallel IGBT modules in the MMC system, this paper presents a design method of condition monitoring system based on the relationship between the module’s case temperature distribution and its aging state, which enables adaptive evaluation and management of IGBT module under different operating conditions. Firstly, the impact of aging failure on the heat flow of IGBT modules in MMC sub-modules is analyzed, with case temperature selected as the characteristic parameter representing the module's state. Secondly, an aging state monitoring model for IGBT, based on neural network, is established. This model is adaptable to different working points, allowing for the characterization and identification of module states according to the demand preference of different application scenarios. Finally, the proposed condition monitoring system design method is verified on MMC test platform, demonstrating its feasibility and effectiveness. This paper provides an innovative solution for IGBT status monitoring in MMC sub-modules under high power operating conditions, offering a practical and effective approach to state maintenance.

    参考文献
    [1] Li B, Ma Z M, Hidalgo-Gonzalez P, et al. Modeling the impact of EVs in the Chinese power system: pathways for implementing emissions reduction commitments in the power and transportation sectors[J]. Energy Policy, 2021, 149: 111962.
    [2] 袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(5): 1460-1475.Yuan Z C, Guo P Q, Liu G W, et al. Review on control and protection for renewable energy integration through VSC-HVDC[J]. High Voltage Engineering, 2020, 46(5): 1460-1475.(in Chinese)
    [3] 叶杰, 汤广福, 赵成勇. 多电压等级柔性直流电网建模与稳定性分析[J]. 高电压技术, 2022, 48(4): 1433-1441.Ye J, Tang G F, Zhao C Y. Modeling and stability analysis for flexible DC power grid with multi-voltage levels[J]. High Voltage Engineering, 2022, 48(4): 1433-1441.(in Chinese)
    [4] 苑宾, 梅念, 陈东, 等. 三次谐波注入对MMC运行特性的影响[J]. 高电压技术, 2020, 46(3): 1060-1068.Yuan B, Mei N, Chen D, et al. Influences of third harmonic injection on the operation characteristics of MMC system[J]. High Voltage Engineering, 2020, 46(3): 1060-1068.(in Chinese)
    [5] 邓吉利. 柔性直流换流阀压接式IGBT器件可靠性建模与评估[D]. 重庆: 重庆大学, 2018.Deng J L. Reliability modeling and assessment of press-pack igbt devices for the flexible DC converter valve[D]. Chongqing: Chongqing University, 2018.
    [6] Yang S , Bryant A, Mawby P, et al. An industry-based survey of reliability in power electronic converters[C]// 2009 IEEE Energy Conversion Congress and Exposition. IEEE, 2009.
    [7] 吕高泰, 雷万钧, 赵佳琪, 等. MMC子模块关键器件长时间尺度运行工况老化分析与可靠性评估[J]. 高电压技术, 2020, 46(10): 3469-3476.Lü G T, Lei W J, Zhao J Q, et al. Long-time scale working condition based aging analysis and reliability evaluation of key devices in MMC submodule[J]. High Voltage Engineering, 2020, 46(10): 3469-3476.(in Chinese)
    [8] Mandeya R, Chen C L, Pickert V, et al. Gate–emitter pre-threshold voltage as a health-sensitive parameter for IGBT chip failure monitoring in high-voltage multichip IGBT power modules[J]. IEEE Transactions on Power Electronics, 2019, 34(9): 9158-9169.
    [9] Wang K H, Zhou L W, Sun P J, et al. Monitoring bond wires fatigue of multichip IGBT module using time duration of the gate charge[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 888-897.
    [10] Wang K H, Zhou L W, Sun P J, et al. Monitoring bond wire defects of IGBT module using module transconductance[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 2201-2211.
    [11] Yuan W B, He Y G, Li Z G, et al. A real-time aging monitoring method of parallel-connected IGBT modules[J]. Materials Science in Semiconductor Processing, 2021, 124: 105555.
    [12] Dalessandro L, Karrer N, Ciappa M, et al. Online and offline isolated current monitoring of parallel switched high-voltage multi-chip IGBT modules[C]//2008 IEEE Power Electronics Specialists Conference. IEEE, 2008: 2600-2606.
    [13] Chen C L, Pickert V, Al-Greer M, et al. Localization and detection of bond wire faults in multichip IGBT power modules[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7804-7815.
    [14] Tomonaga H, Tsukuda M, Okoda S, et al. 16-Channel micro magnetic flux sensor array for IGBT current distribution measurement[J]. Microelectronics Reliability, 2015, 55(9/10): 1357-1362.
    [15] Wang Z, Qiao W, Qu L Y. A real-time adaptive IGBT thermal model based on an effective heat propagation path concept[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3936-3946.
    [16] Hu Z, Du M X, Wei K X, et al. An adaptive thermal equivalent circuit model for estimating the junction temperature of IGBTs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 392-403.
    [17] 胡姚刚, 李辉, 白鹏飞, 等. 基于壳温差的风电变流器IGBT模块基板焊层健康状态评估[J]. 太阳能学报, 2020, 41(4): 194-204.Hu Y G, Li H, Bai P F, et al. Health assessment of base plate solder of igbt module in wind power converter based on shell temperature difference[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 194-204.(in Chinese)
    [18] 张宇娇, 范虹兴, 张炫焜, 等. 柔性直流输电换流阀用IGBT模块焊料层疲劳寿命研究[J]. 高电压技术, 2020, 46(10): 3381-3389.Zhang Y J, Fan H X, Zhang X K, et al. Fatigue life analysis of IGBT module solder layer for VSC-HVDC valve[J]. High Voltage Engineering, 2020, 46(10): 3381-3389.(in Chinese)
    [19] 夏宏鉴, 陈民铀, 赖伟, 等. 基于频带能量的模块化多电平换流阀中金属化薄膜电容器失效检测方法[J]. 中国电机工程学报, 2021, 41(22): 7782-7793.Xia H J, Chen M Y, Lai W, et al. Failure detection method for metalized polypropylene film capacitor in modular multilevel converter based on band energy[J]. Proceedings of the CSEE, 2021, 41(22): 7782-7793.(in Chinese)
    [20] 肖飞, 刘宾礼, 罗毅飞. IGBT疲劳失效机理及其健康状态监测[M]. 北京: 机械工业出版社, 2019.Xiao F, Liu B L, Luo Y F. Fatigue failure mechanism of IGBT and its health monitoring[M]. Beijing: China Machine Press, 2019.(in Chinese)
    [23] 韩晓云, 郝全睿, 许烽, 等. 模块化多电平换流器的可靠性维修周期优化[J]. 高电压技术, 2020, 46(10): 3429-3439.Han X Y, Hao Q R, Xu F, et al. Optimization of reliability maintenance cycle of modular multilevel converter[J]. High Voltage Engineering, 2020, 46(10): 3429-3439.(in Chinese)
    [21] B?czkowski S, Ghimre P, de Vega A R, et al. Online Vce measurement method for wear-out monitoring of high power IGBT modules[C]//2013 15th European Conference on Power Electronics and Applications (EPE). Lille, France: IEEE, 2013: 1-7.
    [22] Gelagaev R, Jacqmaer P, Driesen J. A fast voltage clamp circuit for the accurate measurement of the dynamic ON-resistance of power transistors[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1241-1250.
    [24] Hu B R, Hu Z D, Ran L, et al. Heat-flux-based condition monitoring of multichip power modules using a two-stage neural network[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7489-7500.
    [25] 杨立敏, 王晖, 韩志勇, 等. 全桥型模块化多电平换流器损耗简化计算模型研究[J]. 电工电能新技术, 2019, 38(8): 53-62.Yang L M, Wang H, Han Z Y, et al. Research on simplified loss model of full-bridge modular multilevel converters[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(8): 53-62.(in Chinese)
    [26] Khomfoi S, Tolbert L M. Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 2954-2968.
    [27] Tang Y, Ran L, Alatise O, et al. Improved testing capability of the model-assisted testing scheme for a modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7823-7836.
    [28] Holman J P. Heat transfer[M]. New York: McGraw-Hill, 2009.
    [29] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.(in Chinese)
    [30] 王月月, 陈民铀, 赖伟, 等. 基于MOSFET外特性参量的自适应模糊神经网络状态评估模型[J]. 电工技术学报, 2018, 33(18): 4286-4294.Wang Y Y, Chen M Y, Lai W, et al. Healthy condition assessment on MOSFETs based on external characteristic parameters and adaptive neuro-fuzzy inference system[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4286-4294.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗丹,陈民铀,赖伟,夏宏鉴,黎昌盛.大功率MMC系统中子模块IGBT状态监测系统设计方法[J].重庆大学学报,2023,46(11):102-118.

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 612
  • HTML阅读次数: 55
  • 引用次数: 0
历史
  • 收稿日期:2023-06-01
  • 在线发布日期: 2023-11-28
文章二维码