过硫酸盐协同电化学体系去除渗滤液中富里酸
作者:
作者单位:

重庆大学 教育部三峡库区生态环境重点实验室,重庆 400045

作者简介:

于志鹏(1995—),男,硕士研究生,主要从事水污染控制技术方向的研究。

通讯作者:

曾晓岚,女,副教授,博士生导师,(E-mail)wendyzeng@cqu.edu.cn。

中图分类号:

X703.1

基金项目:

重庆市建委科技计划资助项目(城科字第{2015-1-31}号);重庆大学大型仪器设备开放基金资助项目(202103150126)。


Electrochemistry and persulfate synergistic action to remove fulvic acid from leachate
Author:
Affiliation:

Key Laboratory of the Ministry of education of the Three Gorges Reservoir Area, Chongqing University, Chongqing 400045, P. R. China

Fund Project:

Supported by Science and Technology Plan Project of Chongqing Housing and Urban Rural Construction Commission (City Technology No. {2015-1-31}) and Sharing Fund of Chongqing University’s Large-Scale Equipment (202103150126).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [13]
  • | | |
  • 文章评论
    摘要:

    中国多数焚烧厂采用“MBR+反渗透”工艺处理渗滤液,该工艺的反渗透膜进水富里酸含量偏高,是导致反渗透膜结垢污染的原因之一。为降低反渗透膜进水中富里酸含量,研究以过硫酸盐协同电化学体系处理自配富里酸废水,讨论体系中去除富里酸的主要活性物质,并考察了初始pH值、过硫酸盐投加量、电流密度、极板间距、NaCl质量浓度对富里酸去除率的影响。在此基础上,考察协同体系处理实际焚烧厂渗滤液MBR出水的效果。结果表明:过硫酸盐协同电化学体系对富里酸的去除能力主要由SO4-··OH和Cl-生成的HClO提供,其中HClO有着较大的贡献,其次是·OH,SO4-·贡献最小。初始pH及极板间距对富里酸去除率的影响不大;富里酸去除率随初始过硫酸盐浓度的增大先升高后降低;随电流密度增加先增加后不变;随Cl-质量浓度增大而略微降低。其中,过硫酸盐投加量、电流密度是主要的影响因素。采用过硫酸盐协同电化学体系处理实际焚烧厂渗滤液MBR出水,在电流密度30 mA/cm2、过硫酸钾9 g/L的条件下反应6 h,三维荧光光谱结果显示,可见光及紫外光区富里酸的去除率分别达到98.65%和97.80%。过硫酸盐协同电化学体系能够有效去除实际废水中的富里酸。

    Abstract:

    The treatment of leachate from most incineration plants in China often involves the use of “membrane bioreactor (MBR) + reverse osmosis” technology. However, this process faces challenges due to the high concentration of fulvic acid in the reverse osmosis system influent, resulting in membrane fouling. In this study, a persulfate synergistic electrochemical system(EC+PS system) was used to reduce the fulvic acid concentration. The study focused on identifying the main active substances responsible for removing fulvic acid in the system. The effect of initial pH value, persulfate dosage(PS), current density, plate space, NaCl concentration on the degradation of fulvic acid was investigated. The results showed that fulvic acid removal mainly relied on Cl- provided by HClO,·OH and SO4-· in succession. The fulvic acid removal rate decreased slightly with increasing initial pH and plate spacing, exhibited an initial increase followed by a decrease with rising initial PS concentration, showed an initial increase followed by stability with increasing current density, and slightly decreased with the increase of Cl- concentration. Both current density and persulfate dosage were identified as the main influencing factors for fulvic acid removal. In practical applications, the leachate effluent from the MBR of an actual incinerator was treated using the EC+PS system under a current density 30 mA/cm2, potassium persulfate 9 g/L and reaction time 6 h. Three-dimensional fluorescence spectrum analysis showed that the removal rate of fulvic acid in both visible and ultraviolet regions reached 98.65% and 97.80%, respectively, indicating the effectiveness of the EC+PS system in removing fulvic acid from real wastewater samples.

    参考文献
    [1] 邓阳, 冯传平, 胡伟武, 等. 电化学氧化垃圾渗滤液生化出水过程中溶解性有机物形态及可生化性[J]. 环境化学, 2018, 37(7): 1647-1659.Deng Y, Feng C P, Hu W W, et al. DOM composition and biodegradability of biologically treated landfill leachate during electrochemical oxidation degradation[J]. Environmental Chemistry, 2018, 37(7): 1647-1659.(in Chinese)
    [2] 李堃宇. 反渗透膜处理垃圾焚烧厂与填埋场渗滤液结垢机理研究[D]. 重庆: 重庆大学, 2016.Li K Y. Study on fouling mechanism of RO membrane treament for incinerators and landfill leachate[D]. Chongqing: Chongqing University, 2016. (in Chinese)
    [3] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021(8): 1426-1439.Han W L, Dong L Y. Activation methods of advanced oxidation processes based on sulfate radical and their applications in the degradation of organic pollutants[J]. Progress in Chemistry, 2021(8): 1426-1439.(in Chinese)
    [4] Fernandes A, Nunes M J, Rodrigues A S, et al. Electro-persulfate processes for the treatment of complex wastewater matrices: present and future[J]. Molecules, 2021, 26(16): 4821.
    [5] Song H R, Yan L X, Ma J, et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116: 182-193.
    [6] 吴娜娜, 钱虹, 王宇思, 等. 电化学协同过硫酸盐处理有机废水的研究进展[J]. 建筑与预算, 2017(9): 29-33.Wu N N, Qian H, Wang Y S, et al. Recent advances in electro-persulfate processes in organic wastewater treatment[J]. Construction and Budget, 2017(9): 29-33.(in Chinese)
    [7] 陈希, 纪志永, 黄智辉, 等. 电化学协同过硫酸盐氧化法处理含盐有机废水[J]. 化工进展, 2019, 38(12): 5572-5577.Chen X, Ji Z Y, Huang Z H, et al. Electrochemical synergistic persulfate oxidation process for treatment of salty organic wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5572-5577.(in Chinese)
    [8] 冯俊生, 张郓, 王晓红, 等. 石墨烯电极电活化过硫酸盐降解含酚废水研究[J]. 安全与环境学报, 2021, 21(1): 404-410.Feng J S, Zhang Y, Wang X H, et al. Degrading phenolic sewage via the graphene electrodes through the electrically activated persulfate[J]. Journal of Safety and Environment, 2021, 21(1): 404-410.(in Chinese)
    [9] Cui Y H, Xue W J, Yang S Q, et al. Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration[J]. Chemical Engineering Journal, 2018, 353: 208-217.
    [10] 郭晓磊. 过硫酸盐高级氧化技术处理垃圾渗滤液纳滤浓缩液的研究[D]. 武汉: 华中科技大学, 2017.Guo X L. Treatment of landfill leachate nanofiltration concentrate by persulfate advanced oxidation technology[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
    [11] Zhang H, Wang Z, Liu C, et al. Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250: 76-82.
    [12] 谷永, 闫志明, 王兴, 等. 氯离子对过硫酸盐氧化苯胺的影响[J]. 环境工程学报, 2021, 15(8): 2627-2638.Gu Y, Yan Z M, Wang X, et al. Effect of chloride ions on the oxidation of aniline using persulfate[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2627-2638.(in Chinese)
    [13] Yu X Y, Bao Z C, Barker J R. Free radical reactions involving Cl·, and Cl2-·, and SO4-· in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl-[J]. The Journal of Physical Chemistry A, 2004, 35(14): 108(2): 295-308.
    [14] Li W, Orozco R, Camargos N, et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation[J]. Environmental Science & Technology, 2017, 51(7): 3948-3959.
    [15] le Luu T, Kim J, Yoon J. Physicochemical properties of RuO2 and IrO2 electrodes affecting chlorine evolutions[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 400-404.
    [16] Gholami M, Fard M B, Zabihzadeh M, et al. Sulphate radical-based advanced oxidation technologies for removal of COD and ammonia from hazardous landfill leachate: a review[J]. International Journal of Environmental Analytical Chemistry, 2021: 1-19.
    [17] Sirés I, Brillas E, Oturan M A, et al. Electrochemical advanced oxidation processes: today and tomorrow. A review[J]. Environmental Science and Pollution Research International, 2014, 21(14): 8336-8367.
    [18] Xue W J, Cui Y H, Liu Z Q, et al. Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate[J]. Separation and Purification Technology, 2020, 231: 115928.
    [19] 王维大, 王丽丽, 孙岩柏, 等. 电化学氧化耦合铁感应电极激发过硫酸盐氧化处理焦化废水生化出水[J]. 环境化学, 2019, 38(11): 2563-2572.Wang W D, Wang L L, Sun Y B, et al. Electrochemical oxidation coupling iron plate induction electrode excited persulfate oxidation treatment of coking wastewater biochemical water[J]. Environmental Chemistry, 2019, 38(11): 2563-2572. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于志鹏,王以茜,曾晓岚.过硫酸盐协同电化学体系去除渗滤液中富里酸[J].重庆大学学报,2023,46(12):34-42.

复制
分享
文章指标
  • 点击次数:221
  • 下载次数: 491
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2022-03-29
  • 在线发布日期: 2023-12-19
文章二维码