基于VMD-GRU网络大型公共建筑冷负荷预测
CSTR:
作者:
作者单位:

西安建筑科技大学 建筑设备科学与工程学院,西安 710055

作者简介:

于军琪(1969-),男,教授,博士生导师,主要从事智能建筑方向研究。

通讯作者:

赵安军,男,副教授,硕士生导师,(E-mail)zhao_anjun@163.com。

中图分类号:

基金项目:

陕西省重点研发计划资助项目(Z20180244);碑林区应用技术研发资助项目(GX1903)。


Research on cold load forecasting model of large public buildings based on VMD-GRU network cold load forecasting model of large public buildings based on VMD-GRU network
Author:
Affiliation:

School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China

Fund Project:

Supported by Shaanxi Province Key Research and Development Plan Project (Z20180244), Beilin District Applied Technology Research and Development Project (GX1903).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于冷负荷时间序列固有的复杂性和不规则性,针对预测过程中容易出现梯度消失、模态混叠和过拟合等问题,提出一种集成变分模态分解(variational mode decomposition,VMD)和门控循环单元网络(gated recurrent unit,GRU)的VMD-GRU模型。对原始数据进行相关性分析,挑选出相关性高的进行预测;使用VMD将原始数据序列分解为独立固有模式函数;使用GRU对每个分量进行预测;将分量预测结果相加得出冷负荷预测值。为验证模型的有效性,以西安某大型公共建筑为例进行能耗分析,并与BP、 GRU、EMD-BP、VMD-BP、EMD-GRU等其他预测模型进行对比。实验结果表明,提出的VMD-GRU模型可有效解决梯度消失、模态混叠和过拟合等问题,预测精度显著提高,预测效果优于其它预测模型,符合大型公共建筑冷负荷的变化规律,为节能优化提供有力数据支撑。

    Abstract:

    Due to the inherent complexity and irregularity of cold load time series data, problems such as gradient disappearance, modal aliasing and over-fitting are prone to occur during the prediction process. Predicting the cold load of large public buildings remains a challenging task. To solve this problem and improve the prediction accuracy, the VMD-GRU model is proposed in this study. Real data from large public buildings were utilized to test the proposed model. The prediction process involves the following steps: 1) Correlation analysis of the original data and selection of highly correlated predictors; 2) Decomposition of the original data sequence into independent eigenmode functions using VMD; 3) Prediction of each component using GRU ; 4) Aggregation of component prediction results to obtain the cold load prediction value. To validate the model's effectiveness, a large public building in Xi'an is taken as an example for energy consumption analysis. The results are compared with other prediction models, including BP, GRU, EMD-BP, VMD-BP, EMD-GRU. Experimental results show that the proposed model effectively solves the problems, such as gradient disappearance, modal aliasing and over-fitting, accurately predicting the cold load of large public buildings.

    参考文献
    相似文献
    引证文献
引用本文

于军琪,解云飞,赵安军,王佳丽,冉彤,惠蕾蕾.基于VMD-GRU网络大型公共建筑冷负荷预测[J].重庆大学学报,2023,46(12):66-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-19
  • 出版日期:
文章二维码