路侧侵扰影响下的机动车速度特性分析及预测
作者:
作者单位:

昆明理工大学 交通工程学院,昆明 650500

作者简介:

谢济铭(1994—),男,博士研究生,主要从事交通状态识别与演变研究,(E-mail) xiejiming@kust.edu.cn。

通讯作者:

秦雅琴,女,教授,博士生导师,(E-mail) qinyaqin@kust.edu.cn。

中图分类号:

U495

基金项目:

国家自然科学基金资助项目(71861016)。


Analysis and prediction of motor vehicle speed characteristics under the influence of roadside intrusions
Author:
Affiliation:

Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (71861016).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    低等级道路路侧侵扰现象频繁,冲突严重,紊乱无序。准确预测其复杂交通行为特性,可揭示路侧侵扰影响下的交通事故发生机制。为此采集低等级公路和城市道路5类常见的路侧侵扰源视频,提取高分辨率车辆微观轨迹,获取行经侵扰区的车辆速度,划分侵扰区特征断面,分析车速时空特性演变规律,采用线性、对数以及三次回归建立车速预测模型。三次回归模型在侵扰区复杂场景下表现出更好的车速预测性能。结果表明:低等级城市道路侵扰区的车速降幅普遍高于公路,驾驶人在侵扰源及附近减速效应显著,当驾驶人与侵扰主体的意图协调后,驾驶人会加速通过前方侵扰区,但当侵扰主体的行为意图难以预测时,车速会出现一定波动。

    Abstract:

    Low-grade roads often experience frequent roadside intrusions, leading to serious conflicts and disorder. Accurate prediction of the complex traffic-behavior characteristics on such roads is essential for understanding the mechanisms of traffic accidents influenced by roadside intrusions. For this purpose, we collected videos depicting five types of common roadside intrusions on low-grade highways and urban roads. From these videos, we extracted high-resolution vehicle micro-trajectories, and determined the vehicle speeds as they traversed the intrusion area. Then, we identified characteristic sections within the intrusion area, and analyzed the evolution of spatial and temporal characteristics of the vehicle speed. Finally, we established a vehicle speed prediction model using linear, logarithmic and cubic regressions. Notably, the cubic regression model exhibited superior speed prediction performance in the complex scenarios of the intrusion area. The results showed that speed reduction in the intrusion zone of low-grade urban roads is typically higher than that on highways. The deceleration effect is significant for drivers approaching the intrusion source. Additionally, drivers tend to accelerate through the front intrusion zone when their intentions align with those of the intrusion source. However, in scenarios where predicting the behavioral intentions of the intrusion source is challenging, speed may fluctuate to some extent.

    参考文献
    [1] 中华人民共和国交通运输部. 2020年交通运输行业发展统计公报[EB/OL]. (2021-05-19)[2022-03-15] http://www.gov.cn/xinwen/2021-05/19/content_5608523.htm.Ministry of Transport of the People’s Republic of China. Statistical bulletin on the development of the transport industry in 2020[EB/OL]. (2021-05-19)[2022-03-15] http://www.gov.cn/xinwen/2021-05/19/content_5608523.htm.(in Chinese)
    [2] 任建洲. 小城镇过境公路技术研究[D]. 西安: 长安大学, 2011.Ren J Z. The study of small town through-highway technology[D]. Xi’an: Chang’an University, 2011. (in Chinese)
    [3] 杨金顺, 孙洪运, 李林波, 等. 道路交通系统恢复力研究进展综述[J]. 交通信息与安全, 2014, 32(3): 87-93.Yang J S, Sun H Y, Li L B, et al. Review of road transportation system resilience research[J]. Journal of Transport Information and Safety, 2014, 32(3): 87-93. (in Chinese)
    [4] 余博, 陈雨人, 付云天. 基于驾驶人视觉感知的低等级公路行车速度预测[J]. 同济大学学报(自然科学版), 2017, 45(3): 362-368.Yu B, Chen Y R, Fu Y T. Driving speed prediction method for low-grade highways from drivers’ visual perception[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 362-368. (in Chinese)
    [5] 樊兆董, 李美玲, 冉晋, 等. 基于横向干扰度和交通事故数的车速预测模型构建[J]. 公路与汽运, 2021(2): 34-36, 42.Fan Z D, Li M L, Ran J, et al. Construction of vehicle speed prediction model based on lateral disturbance degree and number of traffic accidents[J]. Highways & Automotive Applications, 2021(2): 34-36, 42. (in Chinese)
    [6] Dong C J, Nambisan S S, Richards S H, et al. Assessment of the effects of highway geometric design features on the frequency of truck involved crashes using bivariate regression[J]. Transportation Research Part A: Policy and Practice, 2015, 75: 30-41.
    [7] 曲大义, 陈文娇, 郭涛, 等. 考虑横向干扰的交叉跟驰模型研究[J]. 公路交通科技, 2015, 32(1): 122-127.Qu D Y, Chen W J, Guo T, et al. Research on staggered car-following model considering lateral disturbance[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 122-127. (in Chinese)
    [8] 陈瑞, 张志清, 赵廷杰, 等. 基于驾驶员心率增长率的穿村镇公路平面线形安全评价[J]. 交通信息与安全, 2011, 29(3): 74-78.Chen R, Zhang Z Q, Zhao T J, et al. Safety evaluation on horizontal alignment of through-village highway based on driver’s growth rate of HR[J]. Journal of Transport Information and Safety, 2011, 29(3): 74-78. (in Chinese)
    [9] Biswas S, Chandra S, Ghosh I. Effects of on-street parking in urban context: a critical review[J]. Transportation in Developing Economies, 2017, 3(1): 1-14.
    [10] ?elik A K, Oktay E. A multinomial logit analysis of risk factors influencing road traffic injury severities in the Erzurum and Kars Provinces of Turkey[J]. Accident Analysis & Prevention, 2014, 72: 66-77.
    [11] Chen Y H, Liu F H, Bai Q W, et al. Analysis of conflict factors between pedestrians and right-turning vehicles at signalized intersections[J]. Journal of Southeast University (English Edition), 2019, 35(1): 118-124.
    [12] Bai L, Liu P, Chan C Y, et al. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow[J]. Transportation Research Part A: Policy and Practice, 2017, 101: 203-217.
    [13] Apasnore P, Ismail K, Kassim A. Bicycle-vehicle interactions at mid-sections of mixed traffic streets: examining passing distance and bicycle comfort perception[J]. Accident Analysis & Prevention, 2017, 106: 141-148.
    [14] 赵磊, 张志清, 刘豪, 等. 穿村镇公路横向干扰关键因素识别[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(6): 1125-1129.Zhao L, Zhang Z Q, Liu H, et al. Identification of key factors of horizontal interference of highway through towns and villages[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(6): 1125-1129. (in Chinese)
    [15] 徐进, 曾粤. 高速条件下隧道出入口行驶速度特性[J]. 交通运输工程学报, 2021, 21(4): 197-209.Xu J, Zeng Y. Characteristics of driving speed at tunnel entrance and exit at high speed[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 197-209. (in Chinese)
    [16] 秦丽辉, 裴玉龙, 白崇喜. 自行车干扰下的城市干路路段通行能力与服务水平[J]. 哈尔滨工业大学学报, 2018, 50(9): 61-67.Qin L H, Pei Y L, Bai C X. Capacity and LOS of urban arterial road segment under the interference of bicycle[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 61-67. (in Chinese)
    [17] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
    [18] 陈亦新, 王雪松. 山区高速公路组合线形路段车道偏移行为[J]. 中国公路学报, 2018, 31(4): 98-104.Chen Y X, Wang X S. Effects of combined alignments of mountainous freeways on lane departure[J]. China Journal of Highway and Transport, 2018, 31(4): 98-104. (in Chinese)
    [19] Yadav A K, Velaga N R. Investigating the effects of driving environment and driver characteristics on drivers’ compliance with speed limits[J]. Traffic Injury Prevention, 2021, 22(3): 201-206.
    [20] Zheng C J, He R, Wan X, et al. The study on in-city capacity affected by pedestrian crossing[J]. Mathematical Problems in Engineering, 2016, 2016: 5271904.
    [21] Ahmed M, Huang H L, Abdel-Aty M, et al. Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J]. Accident Analysis & Prevention, 2011, 43(4): 1581-1589.
    [22] Fitzsimmons E J, Kvam V, Souleyrette R R, et al. Determining vehicle operating speed and lateral position along horizontal curves using linear mixed-effects models[J]. Traffic Injury Prevention, 2013, 14(3): 309-321.
    [23] 赵鹏燕. 路侧干扰影响下低等级道路交通安全风险韧性研究[D]. 昆明: 昆明理工大学, 2022.Zhao P Y. Study on risk resilience of low grade road safety under roadside interference[D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese)
    [24] 谢济铭, 彭博, 秦雅琴. 基于换道概率分布的多车道交织区元胞自动机模型[J].交通运输系统工程与信息, 2022, 22(3): 276-285.Xie J M, Peng B, Qin Y Q. Cellular automata model of multi-lane weaving area based on lane-changing probability distribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 276-285. (in Chinese)
    [25] 祝站东, 荣建, 周伟. 路侧干扰对运行速度的影响[J]. 北京工业大学学报, 2010, 36(11): 1524-1530.Zhu Z D, Rong J, Zhou W. The impact of roadside interferences on operating speed[J]. Journal of Beijing University of Technology, 2010, 36(11): 1524-1530. (in Chinese)
    [26] 袁华智, 阎莹, 袁志兵, 等. 考虑多因素修正的山区二级公路弯坡组合路段小型车运行速度模型[J]. 中国公路学报, 2022, 35(1): 286-297.Yuan H Z, Yan Y, Yuan Z B, et al. Operating speed model of small car on combined horizontal and vertical curves of mountain secondary roads considering multi-factor correction[J]. China Journal of Highway and Transport, 2022, 35(1): 286-297. (in Chinese)
    [27] 杨金燕. 城市道路坡道及弯道上的车速预测模型研究[D]. 重庆: 重庆交通大学,2019.Yang J Y. Research on vehicle speed prediction model on urban road ramp and curved road[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢济铭,钱正富,夏玉兰,赵鹏燕,秦雅琴.路侧侵扰影响下的机动车速度特性分析及预测[J].重庆大学学报,2024,47(3):53-65.

复制
分享
文章指标
  • 点击次数:1113
  • 下载次数: 838
  • HTML阅读次数: 69
  • 引用次数: 0
历史
  • 收稿日期:2022-03-30
  • 在线发布日期: 2024-04-02
文章二维码