FRP-混凝土组合式护栏防护重型车辆撞击的能力
作者:
作者单位:

1.重庆大学 土木工程学院,重庆 400045;2.招商局重庆交通科研设计院有限公司 桥梁工程结构动力学国家重点实验室,重庆 400067

作者简介:

郑植(1992—),男,博士研究生,主要从事工程结构抗冲击与防护研究,(E-mail)zhengzhi@cqu.edu.cn。

通讯作者:

杨波,男,教授,(E-mail)yang0206@cqu.edu.cn。

中图分类号:

U417.1+2

基金项目:

重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX1658);贵州省科技计划资助项目(黔科合支撑(2022)026)。


Anti-collision performance of FRP-concrete combined guardrail under heavy vehicle impact
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.National Key Laboratory of Structural Dynamics of Bridge Engineering, China Merchants Chongqing Communications Technology Research and Design Institute Co., Ltd., Chongqing 400067, P. R. China

Fund Project:

Supported by Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1658), and the Science and Technology plan project of Guizhou Province (Qiankehe Support (2022)026).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [4]
  • | | |
  • 文章评论
    摘要:

    为提高低等级混凝土护栏防护重型车辆的能力,设计了3种不同构造形式的复合材料护板,分别设置在混凝土护栏表面形成组合式护栏。建立车-护栏精细化有限元模型,通过与实车碰撞试验结果对比,验证了有限元模型的可靠性。考虑撞击力、碰撞角度、车辆轨迹、货厢尾部抬高、车辆动态外倾值、车辆外倾角6个评价指标,对比分析了3种方案护栏的防车撞性能。结果表明,在整体式货车撞击下,3种方案护栏均能顺利引导车辆转向,不带阻坎的方案一的各主要指标均优于其他方案,防护能力最优;在拖挂式货车撞击下,方案一的护栏导向与阻挡性能依然良好,驶出角仅为0.75°;改造后的组合式护栏防护能量达到650 kJ,防护能力是改造前的4倍。

    Abstract:

    To improve the protective capabilities of existing low-grade concrete guardrails against heavy vehicles,three types of composite protective plates designed for direct installation on the surface of concrete guardrails were developed. Refined finite element (FE) models of truck-guardrails were established, and the reliability of these models was verified by comparison with crash test results. Six evaluation indexes, including impact force,collision angle variations,vehicle trajectory, height variations of the carriage box tail,vehicle dynamic extroversion value and camber angle, were considered. The anti-collision performance of the three schemes was compared and analyzed. The results indicate that all three kinds of guardrails effectively guide vehicles to turn smoothly during the integral truck impacts. Scheme 1, without hindrance, demonstrates superior performance in key indices compared to the others. Under towed truck impacts, scheme 1 exhibits excellent guiding and blocking capabilities, with an exit angle of only 0.75°.The protection energy of the combined guardrail reaches 650 kJ,providing a protection capacity 4 times greater than the existing low-grade guardrail.

    参考文献
    [1] 闫书明. 单坡面混凝土护栏碰撞分析[J]. 北京工业大学学报, 2012, 38(4): 586-589, 613.Yan S M. Impact analysis of single slope concrete barrier[J]. Journal of Beijing University of Technology, 2012, 38(4): 586-589, 613.(in Chinese)
    [2] Ozcanan S, Atahan A O. Minimization of Accident Severity Index in concrete barrier designs using an ensemble of radial basis function metamodel-based optimization[J]. Optimization and Engineering, 2021, 22(1): 485-519.
    [3] Dinnella N, Chiappone S, Guerrieri M. The innovative “NDBA” concrete safety barrier able to withstand two subsequent TB81 crash tests[J]. Engineering Failure Analysis, 2020, 115(1): 104660.
    [4] Zhou R G, Xie Y D, Qiao J G. Highway concrete guardrail lifting scheme and safety performance verification[J]. Journal of Transportation Technologies, 2021, 11(1): 1-13.
    [5] Cao R, Agrawal A K, El-Tawil S, et al. Numerical studies on concrete barriers subject to MASH truck impact[J]. Journal of Bridge Engineering, 2020, 25(7): 04020035.
    [6] 张晶, 白书锋, 石红星, 等. 车辆与弯道混凝土护栏碰撞的动态数值模拟及试验[J]. 中国公路学报, 2007, 20(1): 102-106.Zhang J, Bai S F, Shi H X, et al. Dynamic numerical simulation and experiment for vehicle and curved concrete barriers crash[J]. China Journal of Highway and Transport, 2007, 20(1): 102-106.(in Chinese)
    [7] Yang J, Xu G J, Cai C S, et al. Crash performance evaluation of a new movable Median guardrail on highways[J]. Engineering Structures, 2019, 182: 459-472.
    [8] Yin H F, Fang H B, Wang Q, et al. Design optimization of a MASH TL-3 concrete barrier using RBF-based metamodels and nonlinear finite element simulations[J]. Engineering Structures, 2016, 114: 122-134.
    [9] 赵建, 雷正保, 王素娟. 高速公路跨线桥SS级防撞护栏优化设计[J]. 公路交通科技, 2011, 28(9): 142-146, 158.Zhao J, Lei Z B, Wang S J. Optimization of SS crash barrier of overpass bridge on expressway[J]. Journal of Highway and Transportation Research and Development, 2011, 28(9): 142-146, 158.(in Chinese)
    [10] 闫书明. 城市桥梁新型桥侧混凝土护栏的碰撞分析[J]. 武汉科技大学学报, 2014, 37(3): 223-227.Yan S M. Impact analysis of a new type of roadside concrete barrier for urban bridges[J]. Journal of Wuhan University of Science and Technology, 2014, 37(3): 223-227.(in Chinese)
    [11] 雷正保, 颜海棋, 周屏艳, 等. 山区公路混凝土护栏碰撞特性仿真分析[J]. 交通运输工程学报, 2007, 7(1): 85-92.Lei Z B, Yan H Q, Zhou P Y, et al. Simulation analysis for collision characteristics of concrete barriers on montane highway[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 85-92.(in Chinese)
    [12] 雷正保, 杨兆. 汽车撞击护栏时乘员的安全性研究[J]. 振动与冲击, 2006, 25(2): 5-11, 179.Lei Z B, Yang Z. Study on the passenger safety during the impact process of automobile against fence[J]. Journal of Vibration and Shock, 2006, 25(2): 5-11, 179.(in Chinese)
    [13] Bank L C, Gentry T R. Development of a pultruded composite material highway guardrail[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1329-1338.
    [14] Bank L C, Gentry T R. Composite material highway guardrail having high impact energy dissipation characteristics: US6149134[P]. 2000-11-21.
    [15] Gentry T R,Bank L C. Pendulum impacts into FRP composite guardrail prototypes:testing and simulation[C].Transportation Research Board 79th Annual Meeting Paper No.000481, 2000.
    [16] Dutta P K. An investigation into the design and manufacture of FRP composite W-beam guardrail[J]. International Journal of Materials and Product Technology, 2003, 19(1/2): 130.
    [17] 金思宇, 黄有平, 范欣愉, 等. 玻纤增强热塑性复合材料公路护栏应用技术开发[J]. 高科技纤维与应用, 2016, 41(4): 56-64, 69.Jin S Y, Huang Y P, Fan X Y, et al. Technical development of highway guardrail with glass fiber reinforced thermoplastic composites[J]. Hi-Tech Fiber & Application, 2016, 41(4): 56-64, 69.(in Chinese)
    [18] Sun S J, Li H Y, Zhu C H, et al. Study on the anti-collision performance of basalt fiber reinforced polymer beam–column guardrail[J]. Composite Structures, 2021, 276: 114588.
    [19] 中华人民共和国交通运输部. 公路交通安全设施设计细则: JTG/T D81-2017[S]. 北京: 人民交通出版社, 2017.Ministry of Transport of the People's Republic of China. Design Guideline for Highway Safety Facilities: JTG/T D81-2017[S]. Beijing: China Communications Press, 2017. (in Chinese)
    [20] 赵武超, 钱江, 王娟. 重型车辆撞击下桥墩碰撞力简化模型[J]. 交通运输工程学报, 2019, 19(4): 47-58.Zhao W C, Qian J, Wang J. Simplified impact force model of pier under heavy vehicle collision[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 47-58.(in Chinese)
    [21] 郑植, 耿波, 王福敏, 等. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.Zheng Z, Geng B, Wang F M, et al. Improvement of protective ability for existing low-grade concrete guardrail[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1362-1374.(in Chinese)
    [22] 雷正保, 杨兆. 三波护栏的耐撞性研究[J]. 公路交通科技, 2006, 23(7): 130-136.Lei Z B, Yang Z. Study on crashworthiness of three-beam guardrail structure[J]. Journal of Highway and Transportation Research and Development, 2006, 23(7): 130-136.(in Chinese)
    [23] Marzougui D , Kan C D , Opiela K S .Crash Test & Simulation Comparisons of a Pickup Truck & a Small Car Oblique Impacts Into a Concrete Barrier[C]// The 13th international LS-DYNA users conference. June 8–10, 2014, Dearborn, Michigan,2014,1.
    [24] Polivka K A,Faller R K,Sicking D L, et al.Performance evaluation of the permanent new Jersey safety shape barrierupdate to NCHRP 350 Test No.4-12(2214NJ-2), TRP-03-178-06[R].Midwest Roadside Safety Facility (Mw RSF), 2006.
    [25] 孙胜江, 朱长华, 梅葵花. 玄武岩纤维复合材料梁-柱式护栏防撞性能[J]. 振动与冲击, 2019, 38(21): 265-270.Sun S J, Zhu C H, Mei K H. Anti-collision performance of basalt fiber composite beam-column guardrails[J]. Journal of Vibration and Shock, 2019, 38(21): 265-270.(in Chinese)
    [26] Pan J, Fang H, Xu M C, et al. Study on the performance of energy absorption structure of bridge piers against vehicle collision[J]. Thin-Walled Structures, 2018, 130: 85-100.
    [27] Wang J J, Song Y C, Wang W, et al. Evaluation of composite crashworthy device for pier protection against barge impact[J]. Ocean Engineering, 2018, 169: 144-158.
    [28] 郑植, 耿波, 杨波, 等. 新型旋转式护栏防车撞能力与导向机理[J]. 振动与冲击, 2022, 41(12): 202-214.Zheng Z, Geng B, Yang B, et al. Anti-collision ability and guiding mechanism of a new rotary guardrail[J]. Journal of Vibration and Shock, 2022, 41(12): 202-214.(in Chinese)
    [29] 中华人民共和国交通运输部. 公路护栏安全性能评价标准: JTG B05-01-2013[S]. 北京: 人民交通出版社, 2013.Ministry of Transport of the People's Republic of China. The Evaluation Specification for way Safety Barriers: JTG B05-01-2013[S]. Beijing: China Communications Press, 2013. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑植,杨波,袁佩,耿波.FRP-混凝土组合式护栏防护重型车辆撞击的能力[J].重庆大学学报,2024,47(4):51-63.

复制
分享
文章指标
  • 点击次数:248
  • 下载次数: 709
  • HTML阅读次数: 156
  • 引用次数: 0
历史
  • 收稿日期:2023-06-15
  • 在线发布日期: 2024-05-06
文章二维码