电磁铁传热特性及散热优化的数值模拟
作者:
作者单位:

四川航天烽火伺服控制技术有限公司,成都 610000

作者简介:

李英杰(1997—),男,硕士研究生,主要从事液压技术研究,(E-mail)1005454565@qq.com。

通讯作者:

司国雷,男,博士,研究员,(E-mail)15388119104@163.com。

中图分类号:

TK121

基金项目:

国家重点研发计划项目(2019YFB2005104);成都市重大科技创新项目(2021-YF08-00012-GX)。


Numerical simulation of heat transfer characteristics and heat dissipation optimization for electromagnets
Author:
Affiliation:

Sichuan Aerospace Fenghuo Servo Control Technology Corporation, Chengdu 610000, P. R. China

Fund Project:

Supported by National Key Research and Development Program (2019YFB2005104), and Major Science and Technology Innovation Projects in Chengdu (2021-YF08-00012-GX).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电磁铁是电液控制系统的核心液压元件,被广泛应用于航空航天和石油工业等领域,但电磁铁工作产生的焦耳热和电磁损耗会导致温度迅速升高、局部热应力和不均匀膨胀变形,严重影响稳定性和使用寿命。笔者采用有限元软件研究电磁铁温度、应力及变形的演化规律,分析导热套筒散热与强制对流散热对其热性能的影响规律。结果表明:随着线圈功率增大,电磁铁的最大温度、热应力和变形量均线性增大;随着套筒厚度增加,稳态的最大温度、变形量和导热量线性减小,温降幅度为12.5 ℃/mm;随着流速增加,最大温度、热应力和变形量显著减小,温降幅度45.5 ℃/(m·s-1),说明增强导热和对流均能提高电磁铁热性能且对流更为显著。

    Abstract:

    Electromagnets, serving as core hydraulic components in electro-hydraulic control systems, are widely applied in aerospace and petroleum industries. The operational generation of Joule heat and electromagnetic loss results in rapid temperature increase, local thermal stress and uneven expansion deformation, significantly affecting stability and service life. The evolution of temperature, stress and deformation in the electromagnet was studied using finite element software, and the influence of heat dissipation, with considering both heat conduction sleeve and forced convection, on its thermal performance was analyzed. The results show that the maximum temperature, thermal stress and deformation of the electromagnet exhibit a linear increase with the increase of the coil power. Additionally, the steady-state maximum temperature, deformation and thermal conductivity demonstrate a linear decrease with an increase in sleeve thickness, with the temperature drop recorded at 12.5 ℃/mm. Moreover, as the flow rate rises, there is a notable decrease in maximum temperature, thermal stress and deformation, within a temperature drop range of 45.5 ℃/(m·s-1). This indicates that both enhanced heat conduction and convection contribute to improving the thermal performance of electromagnet, with convection exhibiting a more significant effect.

    参考文献
    [1] Angadi S V, Jackson R L. A critical review on the solenoid valve reliability, performance and remaining useful life including its industrial applications[J]. Engineering Failure Analysis, 2022, 136: 106231.
    [2] 石晓川, 孙光晓, 杜冬锋, 等. 浅谈机械泵船舶发动机停车电磁铁的应用[J]. 内燃机与配件, 2022(11): 28-30.Shi X C, Sun G X, Du D F, et al. Application of stop electromagnet for marine engine of mechanical bump[J]. Internal Combustion Engine & Parts, 2022(11): 28-30.(in Chinese)
    [3] N?rg?rd C, Bech M M, Andersen T O, et al. Flow characteristics and sizing of annular seat valves for digital displacement machines[J]. Modeling, Identification and Control, 2018, 39(1): 23-35.
    [4] Zhang B, Zhong Q, Ma J E, et al. Self-correcting PWM control for dynamic performance preservation in high speed on/off valve[J]. Mechatronics, 2018, 55: 141-150.
    [5] Xue G M, Zhang P L, He Z B, et al. Design and experimental study of a novel giant magnetostrictive actuator[J]. Journal of Magnetism and Magnetic Materials, 2016, 420: 185-191.
    [6] Guo H F, Xu A D, Wang K, et al. Particle filtering based remaining useful life prediction for electromagnetic coil insulation[J]. Sensors, 2021, 21(2): 473.
    [7] Zhao J H, Yue P F, Grekhov L, et al. Hold Current effects on the power losses of high-speed solenoid valve for common-rail injector[J]. Applied Thermal Engineering, 2018, 128: 1579-1587.
    [8] Jameson N J, Azarian M H, Pecht M. Improved electromagnetic coil insulation health monitoring using equivalent circuit model analysis[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105829.
    [9] Liniger J, Stubkier S, Soltani M, et al. Early detection of coil failure in solenoid valves[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 683-693.
    [10] Utah M N, Jung J C. Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks[J]. Nuclear Engineering and Technology, 2020, 52(9): 1998-2008.
    [11] Conti F, Madeo F, Boiano A, et al. Electrical and mechanical data fusion for hydraulic valve leakage diagnosis[J]. Measurement Science and Technology, 2023, 34(4): 044011.
    [12] Gosselin L, Bejan A. Constructal thermal optimization of an electromagnet[J]. International Journal of Thermal Sciences, 2004, 43(4): 331-338.
    [13] Yang S, Ordonez J C. Concurrent solenoid design optimization from thermal and electromagnetic standpoints[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5.
    [14] Wei S H, Chen L G, Sun F R. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2981-2989.
    [15] Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization of an electromagnet[J]. Journal of Applied Physics, 2009, 105(9): 331.
    [16] Chen L G, Wei S H, Xie Z H, et al. Constructal complex-objective optimization of electromagnets based on maximization of magnetic induction and minimization of entransy dissipation rate[J]. International Journal of Energy, Environment and Economics, 2015, 6(4):391-402.
    [17] Liang H M, Bo L, Jiang S, et al. A steady-state thermal network analysis modeling method for hermetically sealed electromagnetic relay and its experimental verification[C]//2022 IEEE 67th Holm Conference on Electrical Contacts (HLM). IEEE, 2022: 1-7.
    [18] Son K T, Lee C C. Temperature measurement of high-density winding coils of electromagnets[J]. IET Science, Measurement & Technology, 2012, 6(1): 1-5.
    [19] Liu Y Y, Xi J Q, Meng F. Temperature prediction and winding temperature measurement of a solenoid valve[J]. International Journal of Vehicle Design, 2020, 82(1/2/3/4): 187-204.
    [20] Liu Y F, Mao M C, Xu X Y, et al. Multi-physics coupled thermo-mechanics analysis of a hydraulic solenoid valve[J]. Applied Mechanics and Materials, 2013, 321/322/323/324: 102-107.
    [21] Dolan A I. Optimal shape of DC electromagnet[J]. Annals of the University of Craiova, Electrical Engineering Series, 2017(41):9-13.
    [22] Li J F, Xiao M Q, Sun Y, et al. Failure mechanism study of direct action solenoid valve based on thermal-structure finite element model[J]. IEEE Access, 2020, 8: 58357-58368.
    [23] 刘少克. 磁悬浮列车用混合悬浮电磁铁温度场建模与仿真[J]. 机车电传动, 2011(6): 32-34.Liu S K. Modeling and simulation of temperature field for mixing suspension electromagnet of maglev train[J]. Electric Drive for Locomotives, 2011(6): 32-34.(in Chinese)
    [24] 何维林, 何云风, 方亮. 箔绕与线绕电磁铁温度场仿真计算研究[J]. 时代农机, 2019, 46(5): 52-54.He W L, He Y F, Fang L. Research on temperature field simulation of foil-wound and wire-wound electromagnet [J]. Times Agricultural Machinery, 2019, 46(5): 52-54.(in Chinese)
    [25] 王春民, 沙超, 孙磊, 等. 基于ANSYS的直流电磁铁温度场仿真分析[J]. 液压与气动, 2015(12): 83-86.Wang C M, Sha C, Sun L, et al. Simulation temperature field of DC electromagnet based on ANSYS[J]. Chinese Hydraulics & Pneumatics, 2015(12): 83-86.(in Chinese)
    [26] 任延飞, 席军强, 陈慧岩, 等. 基于混合建模方法的车用比例电磁阀热效应影响分析[J]. 北京理工大学学报, 2022, 42(3): 251-260.Ren Y F, Xi J Q, Chen H Y, et al. Analysis of thermal effect on proportional solenoid valve used in vehicles based on hybrid modeling[J]. Transactions of Beijing Institute of Technology, 2022, 42(3): 251-260.(in Chinese)
    [27] 孙宾, 刘连哲, 黄礼浩, 等. 电磁阀的热物理场数值仿真与试验研究[J]. 液压与气动, 2019(5): 92-97.Sun B, Liu L Z, Huang L H, et al. Numerical simulation and experimental study of themophysical field for solenoid valve[J]. Chinese Hydraulics & Pneumatics, 2019(5): 92-97.(in Chinese)
    [28] Wang Z L. On the expanded Maxwell’s equations for moving charged media system—General theory, mathematical solutions and applications in TENG[J]. Materials Today, 2022, 52: 348-363.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李英杰,陈川,张瑜,李强,司国雷,宋鹏.电磁铁传热特性及散热优化的数值模拟[J].重庆大学学报,2024,47(5):24-36.

复制
分享
文章指标
  • 点击次数:663
  • 下载次数: 793
  • HTML阅读次数: 241
  • 引用次数: 0
历史
  • 收稿日期:2023-04-02
  • 在线发布日期: 2024-06-11
文章二维码