V2Sin/0 (n=8~17)团簇几何结构、稳定性及特性分析
作者:
作者单位:

1.郑州师范学院 物理与电子工程学院,郑州 450044;2.郑州大学 化工与能源学院,郑州 450001

作者简介:

李成刚(1979—),男,博士,主要从事团簇的结构及物性研究,(E-mail)chenggangli@zznu.edu.cn。

通讯作者:

申梓刚,男,博士,教授,(E-mail)11134809@qq.com。

基金项目:

国家自然科学基金资助项目(11904328,12104416);郑州师范学院青年骨干教师培养计划(QNGG-211361);郑州师范学院本科教学改革研究项目(JXGG-20773);郑州师范学院优秀基层教学组织建设项目(物理与电子工程学院物理学教研室)资助。


Geometric structures, stabilities and properties of V2Sin/0 (n=8~17) clusters
Author:
Affiliation:

1.College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, P. R. China;2.School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (11904328, 12104416), Training Plan for Young Core Teachers in Zhengzhou Normal University (QNGG-211361), Reform of Undergraduate Teaching in Zhengzhou Normal University (JXGG-20773), and Basic Teaching Organization of Zhengzhou Normal University (Physic Teaching and Research Office in College of Physics and Electronic Engineering).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • | | | |
  • 文章评论
    摘要:

    随着硅团簇研究的深入,过渡金属原子掺杂硅团簇的研究得到广泛关注。基于密度泛函理论,系统分析了钒原子掺杂硅团簇的几何结构、稳定性及特性。首先,基于粒子群优化算法的卡里普索结构预测程序,对V2Sin-/0(n=8~17)团簇的基态和亚稳态结构进行了系统搜索。B3LYP/6-311+G(d)水平下优化发现,基态结构中2个钒原子的掺杂引起了原硅团簇结构的重构;随着掺杂体系尺寸增大,2个钒原子(形成V-V键)逐渐被硅笼包裹。其次,以此结构为基础,通过分析平均键能、二阶能量差分和HOMO-LUMO能隙,研究了体系的稳定性。结果表明,V2Si12-/0团簇在各自体系中具有相对高的稳定性。此外,磁性分析发现,闭壳层V2Sin (n=8~17)体系的总自旋磁矩均为零,开壳层V2Sin- (n=8~17)体系分别拥有1 μB的总磁矩。分析极化率发现,V2Si8-/0拥有最大的平均极化率,具有强的非线性光学效应。拟合得到的光电子能谱、红外和拉曼光谱为进一步的实验研究提供了理论支持。热力学特性分析表明,研究体系在热力学上是稳定的。随着温度升高,定容热容和标准熵逐渐增大;随着压强增大,标准熵逐渐减小。

    Abstract:

    The study of silicon clusters has led to significant interest in transition metal atoms doped silicon clusters. In order to provide robust guidelines for future experimental and theoretical investigations of vanadium doped silicon nanomatrials, the geometric structures, stabilities and properties of V2Sin-/0 (n=8~17) clusters were systemically studied using density functional theory. Firstly, the lowest and lower lying energy structures of V2Sin-/0(n=8~17) clusters were globally predicted using the CALYPSO (crystal structure analysis by particle swarm optimization) searching method via the particle swarm optimization algorithm. Geometry optimization at the B3LYP/6-311+G(d) level revealed that two vanadium atoms tend to form V2 bonds encapsulated gradually into silicon cages with an increasing number of silicon atoms. Secondly, based on the lowest energy structures, calculations of the average binding energy, second order energy difference, and HOMO-LUMO gaps indicated that the V2Si12-/0 clusters exhibit higher stability, respectively. In addition, magnetic properties analyses revealed that the total magnetic moment is zero for the closed-shell structures of V2Sin (n=8~17) clusters; However, the open-shell structures of V2Sin (n=8~17) clusters have magnetic moments with values of 1 μB. Upon polarizability analysis, V2Si8-/0 clusters with the highest mean dipole polarizability possess stronger nonlinear optical properties. Furthermore, the simulated PES(photoelectron spectroscopy), IR (infrared), and Raman spectra can provide theoretical guidance for future experimental investigations. Finally, the lowest energy structures of V2Sin (n=8~17) clusters are stable thermodynamically. Moreover, the heat capacity at constant volume (Cv) increases with the increasing of temperature, and standard entropy (S) decreases with temperature increasing.

    参考文献
    [1] Zhao Y R, Bai T T, Jia L N, et al. Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28561-28568.
    [2] Khanna V, Singh R, Claes P, et al. Evolution of vibrational spectra in the manganese-silicon clusters Mn2Sin, n = 10, 12, and 13, and cationic[Mn2Si13]+[J]. The Journal of Physical Chemistry A, 2022, 126(10): 1617-1626.
    [3] 石胜云, 温良英, 曹娇, 等. CO和Cl2在TiO2(110)表面的吸附行为[J]. 重庆大学学报, 2019, 42(8): 50-58.Shi S Y, Wen L Y, Cao J, et al. Adsorption of both CO and Cl2 on TiO2(110) surface[J]. Journal of Chongqing University, 2019, 42(8): 50-58.(in Chinese)
    [4] Zhu B C, Zhang S, Zeng L. The effect of silicon doping on the geometrical structures, stability, and electronic and spectral properties of magnesium clusters: DFT study of SiMgn (n = 1-12) clusters[J]. International Journal of Quantum Chemistry, 2020, 120(10): e26143.
    [5] 柳杨璐, 刘婷婷, 潘复生. 基于第一性原理的镁合金合金相及固溶体研究进展[J]. 重庆大学学报, 2018, 41(10): 30-44.Liu Y L, Liu T T, Pan F S. Research progress on intermetallic compounds and solid solutions of Mg alloys based on first-principles calculation[J]. Journal of Chongqing University, 2018, 41(10): 30-44.(in Chinese)
    [6] Scherer J J, Paul J B, Collier C P. Cavity ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled copper silicides[J]. The Journal of Chemical Physics, 1995, 102: 5190.
    [7] Hiura H, Miyazaki T, Kanayama T. Formation of metal-encapsulating Si cage clusters[J]. Physical Review Letters, 2001, 86(9): 1733-1736.
    [8] Xiao C Y, Hagelberg F, Lester W A. Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters[J]. Physical Review B, 2002, 66(7): 075425.
    [9] Guo L J, Zhao G F, Gu Y Z, et al. Density functional investigation of metal-silicon cage clusters MSin (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n=8-16) [J]. Physical Review B, 2008, 77: 195417.
    [10] Kawamura H, Kumar V, Kawazoe Y. Growth, magic behavior, and electronic and vibrational properties of Cr-doped Si clusters[J]. Physical Review B, 2004, 70(24): 245433.
    [11] Kawamura H, Kumar V, Kawazoe Y. Growth behavior of metal-doped silicon clusters SinM (M=Ti, Zr, Hf; n=8-16) [J]. Physical Review B, 2005, 71: 075423.
    [12] Torres M B, Fernandez E M, Balbas C, Theoretical study of isoelectronic SinM clsuter (M=Sc, Ti, V+; n=14-18) [J]. Physical Review B, 2007, 75: 205425
    [13] Li Y J, Lyon J T, Woodham A P, et al. The geometric structure of silver-doped silicon clusters[J]. ChemPhysChem, 2014, 15(2): 328-336.
    [14] Claes P, Ngan V T, Haertelt M, et al. The structures of neutral transition metal doped silicon clusters, SinX (n=6-9; X=V, Mn) [J]. The Journal of Chemical Physics, 2013, 138: 194301.
    [15] Guo L J, Liu X, Zhao G F. Computational investigation of TiSi?? (??=2-15) clusters by the density-functional theory[J].The Journal of Chemical Physics, 2007, 126: 234704.
    [16] Wang J G, Zhao J J, Ma L, et al. Structure and magnetic properties of cobalt doped Sin (n=2-14) clusters[J]. Physics Letters A, 2007, 367(4/5): 335-344.
    [17] Wang J, Liu Y, Li Y C. Au@Sin: growth behavior, stability and electronic structure[J]. Physics Letters A, 2010, 374(27): 2736-2742.
    [18] Xu H G, Wu M M, Zhang Z G, et al. Photoelectron spectroscopy and density functional calculations of CuSin- (n=4-18) clusters[J]. The Journal of Chemical Physics, 2012, 136: 104308.
    [19] Kong X Y, Xu H G, Zheng W J. Structures and magnetic properties of CrSin- (n=3-12) clusters: photoelectron spectroscopy and density functional calculations[J]. The Journal of Chemical Physics, 2012, 137(6): 064307.
    [20] Han J G, Zhao R N, Duan Y H. Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Sin (n=9-16) clusters: a density functional investigation[J]. The Journal of Physical Chemistry A, 2007, 111(11): 2148-2155.
    [21] Ji X X, Li J, Wang C, et al. Geometries, stabilities and electronic properties of small sized Pd2-doped Sin (n=1-11) clusters[J]. Molecular Physics, 2015, 113(22): 3567-3577.
    [22] Zhang S, Zhang Y, Yang X Q, et al. Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: Rh2Sinq (n=1-10; q=0, ±1) [J]. Journal of Materials Science, 2015, 50(18): 6180-6196.
    [23] Ji W X, Luo C L. Structures, magnetic properties, and electronic counting rule of metals-encapsulated cage-like M2Si18 (M=Ti-Zn) clusters[J]. International Journal of Quantum Chemistry, 2012, 112(12): 2525-2531.
    [24] Ji W X, Luo C L. Density-functional investigation of hexagonal prism transition-metal-encapsulated cage M2Si18 (M=Sc-Zn) clusters[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025011.
    [25] Robles R, Khanna S N, Castleman A WJr. Stability and magnetic properties of T2Sin (T=Cr, Mn, 1≤n≤8) clusters[J]. Physical Review B, 2008, 77(23): 235441.
    [26] Robles R, Khanna S N. Stable T2Sin (T=Fe, Co, Ni, 1≤n≤8) cluster motifs[J]. The Journal of Chemical Physics, 2009, 130(16): 164313.
    [27] Xu H G, Zhang Z G, Feng Y, et al. Vanadium-doped small silicon clusters: photoelectron spectroscopy and density-functional calculations[J]. Chemical Physics Letters, 2010, 487(4/5/6): 204-208.
    [28] Xu H G, Kong X Y, Deng X J, et al. Smallest fullerene-like silicon cage stabilized by a V2 unit[J]. The Journal of Chemical Physics, 2014, 140(2): 024308.
    [29] Lu J, Lu Q H, Li X J. Study on the growth patterns and simulated photoelectron spectroscopy of double vanadium atoms doped silicon clusters V2Sin (n≤ 12) and their anions[J]. Molecular Physics, 2021, 119(7): e1864042.
    [30] Li C G, Chen W G, Cui Y Q, et al. Structures, stabilities and electronic properties of the bimetal V2-doped Sin (n=1-10) clusters: a density functional investigation[J]. The European Physical Journal D, 2020, 74(6): 111.
    [31] Frisch G M J, Trucks W, Schlegel H, et al. Gaussian 09, revision A. 1; Gaussian[M]. New York: Gaussian Incorporated, 2009.
    [32] Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9): 094116.
    [33] Wang Y C, Lv J, Zhu L, et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070.
    [34] Wang Y C, Miao M S, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm[J]. Journal of Chemical Physics, 2012, 137(22): 224108.
    [35] Li C G, Cui Y Q, Tian H, et al. Quantum chemistry study on the structures and electronic properties of bimetallic Ca2-doped magnesium Ca2Mgn (n=1-15) clusters[J]. Nanomaterials, 2022, 12(10): 1654.
    [36] Li C G, Li H J, Cui Y Q, et al. A density functional investigation on the structures, electronic, spectral and fluxional properties of VB20 cluster[J]. Journal of Molecular Liquids, 2021, 339: 116764.
    [37] Li C G, Cui Y Q, Li J X, et al. Probing the structural, electronic and spectral properties of a NbB20 cluster[J]. Molecular Physics, 2021, 119(10): 1910744.
    [38] Becke A D. Density-functional thermochemistry. III: the role of exact exchange[J]. Journal of chemical physics, 1993, 98(7): 5648-5652.
    [39] Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. The Journal of Chemical Physics,1980, 72(1): 650-654.
    [40] Neese F. The ORCA program system[J]. WIREs Computational Molecular Science, 2012, 2(1):73-78.
    [41] Spain E M, Behm J M, Morse M D. The 846 nm A' 3Σu←X 3Σg band system of jet-cooled V2[J]. The Journal of Chemical Physics, 1992, 96(4): 2511-2516.
    [42] Winstead C B, Paukstis S J, Gole J L. Spectroscopy of the H3Σu electronic state of Si2 using a combined laser vaporization-REMPI and oven-based LIF study[J]. Journal of Molecular Spectroscopy, 1995, 173(2): 311-332.
    [43] Huber K P, Herzberg G. Constants of diatomic molecules[M]// Molecular Spectra and Molecular Structure. Boston, MA: Springer, 1979: 8-689.
    [44] James A M, Kowalczyk P, Langlois E, et al. Resonant two photon ionization spectroscopy of the molecules V2, VNb, and Nb2[J].Journal of Chemical Physics, 1994, 101(6): 4485-4495.
    [45] Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李成刚,申梓刚,崔颍琦,田浩,丁艳丽,任保增.V2Sin/0 (n=8~17)团簇几何结构、稳定性及特性分析 [J].重庆大学学报,2024,47(5):122-132.

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 662
  • HTML阅读次数: 77
  • 引用次数: 0
历史
  • 收稿日期:2022-07-25
  • 在线发布日期: 2024-06-11
文章二维码