基于向量残差SVD的混凝土超声测试温度效应研究
作者:
作者单位:

1.重庆交通大学 土木工程学院,重庆 400074;2.省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074

作者简介:

郑罡(1972—),男,博士,研究员,博士生导师,主要从事桥梁结构动力学研究,(E-mail)zhenggang@cqjtu.edu.cn。

中图分类号:

TU375.1

基金项目:

国家自然科学基金资助项目(51478072,51978112)。


Research on temperature effect of concrete ultrasonic testing based on vector residual SVD
Author:
Affiliation:

1.School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China;2.State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing 400074, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(51478072,51978112).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究温度对混凝土超声测试尾波信号的影响规律;将信号向量间的归一化夹角作为波动指标,反映温度效应引起的信号变化;通过向量残差矩阵SVD获得表征温度效应大小的特征向量,建立向量空间映射和温度差的数学关系。在实验室采集混凝土梁尾波信号进行验证,结果表明,随温度升高尾波信号的波形发生后移,文中方法可分段线性量化温度效应;基于量化结果,得到常温下超声尾波信号最敏感的温度区间;任意4.5 ℃范围内,可去除74%~90%的温度效应。

    Abstract:

    In order to study the influence of temperature on the coda wave signal of concrete ultrasonic test, the normalized angle between signal vectors is used as the fluctuation index to reflect the signal change caused by temperature effect. The eigenvectors characterising the magnitude of the temperature effect are obtained by SVD of the vector residual matrix, and the mathematical relationship between the vector space mapping and the temperature difference is established. Verification of concrete beam code wave signals are collected in the laboratory. The results show that the waveform of the coda wave signal shifts backward with increasing temperature, and the proposed method can quantify the temperature effect piecewise and linearly. Based on the quantization results, the most sensitive temperature range of ultrasonic coda wave signal at room temperature is obtained. When the temperature span is 4.5 ℃, 74%~90% of the temperature effect can be removed.

    参考文献
    [1] Larose E, Hall S. Monitoring stress related velocity variation in concrete with a 2×10-5 relative resolution using diffuse ultrasound[J]. The Journal of the Acoustical Society of America, 2009, 125(4): 1853-1856.
    [2] Payan C, Garnier V, Moysan J. Determination of nonlinear elastic constants and stress monitoring in concrete by coda waves analysis[J]. European journal of environmental and civil engineering, 2008, 15(4): 519-531.
    [3] 郭增伟, 田川, 计亲, 等. 混凝土工字梁三点弯曲荷载超声测试[J]. 重庆大学学报, 2019, 42(11): 88-97.Guo, Z W, Tian C, Ji Q, et al. Three-point bending load ultrasonic test of concrete I-beam[J]. Journal of Chongqing University, 2019, 42(11): 88-97.(in Chinese)
    [4] Jiang H W, Zhan H Y, Zhang J Q, et al. Detecting Stress Changes and Damage in Full-Size Concrete T-Beam and Slab with Ultrasonic Coda Waves[J]. Journal of Structural Engineering, 2021, 147(9): 04021140.
    [5] St?hler S C, Sens-Sch?nfelder C, Niederleithinger E. Monitoring stress changes in a concrete bridge with coda wave interferometry[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1945-1952.
    [6] 宋丽莉, 葛洪魁, 郭志伟, 等. 利用多次散射波监测介质性质变化的试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 713-722.Song L L, Ge H K, Guo Z W, et al. Experimental study of variation of media properties monitoring using multiple scattering waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 713-722.(in Chinese)
    [7] Hu H W, Li D Y, Wang L, et al. An improved ultrasonic coda wave method for concrete behavior monitoring under various loading conditions[J]. Ultrasonics, 2021, 116: 106498.
    [8] Gondim R M L, Haach V G. Monitoring of ultrasonic velocity in concrete specimens during compressive loading-unloading cycles[J]. Construction and Building Materials, 2021, 302: 124218.
    [9] Finger C, Saydak L, Vu G, et al. Sensitivity of Ultrasonic Coda Wave Interferometry to Material Damage—Observations from a Virtual Concrete Lab[J]. Materials, 2021, 14(14): 4033.
    [10] Snieder R, Grêt A, Douma H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 2002, 295(5563): 2253-2255.
    [11] Wang X, Chakraborty J, Niederleithinger E. Noise reduction for improvement of ultrasonic monitoring using coda wave interferometry on a real bridge[J]. Journal of Nondestructive Evaluation, 2021, 40(1): 1-14.
    [12] Niederleithinger E, Wang X, Herbrand M, et al. Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams[J]. Sensors, 2018, 18(6): 1971.
    [13] Wang X,Niederleithinger E,Hindersmann I.The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique[J].Structural Health Monitoring,2022,21(3):913-927.
    [14] Larose E, De Rosny J, Margerin L, et al. Observation of multiple scattering of kHz vibrations in a concrete structure and application to monitoring weak changes[J]. Physical Review E, 2006, 73(1): 016609.
    [15] Lu Y H, Michaels J E. A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations[J]. Ultrasonics, 2005, 43(9): 717-731.
    [16] Zhang Y X, Abraham O, Tournat V, et al. Validation of a thermal bias control technique for Coda Wave Interferometry (CWI)[J]. Ultrasonics, 2012, 53(3): 658-664.
    [17] 郑丹, 任涛. 频率及含水量对混凝土损伤超声检测的影响[J]. 水利学报, 2014, 45(S1): 90-94.Zheng D, Ren T. Influence of frequency and water content on ultrasonic detection of concrete damage[J]. Journal of Hydraulic Engineering, 2014, 45(S1): 90-94.(in Chinese)
    [18] Croxford A J, Moll J, Wilcox P D, et al. Efficient temperature compensation strategies for guided wave structural health monitoring[J]. Ultrasonics, 2010, 50(4/5): 517-528.
    [19] Niederleithinger E, Wunderlich C. Influence of small temperature variations on the ultrasonic velocity in concrete[C]//AIP Conference Proceedings. Denver, Colorado, USA. AIP, 2013: 390-397.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑罡,陈鹏,彭宇,于吉港,陈伟基.基于向量残差SVD的混凝土超声测试温度效应研究[J].重庆大学学报,2024,47(6):15-23.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-17
  • 在线发布日期: 2024-07-02
文章二维码