单轴荷载下含层理页岩损伤破坏过程及破坏模式研究
作者:
作者单位:

1.长安大学,基建处 西安 710018;2.长安大学,运输工程学院 西安 710018;3.长安大学,科学研究院 西安 710018;4.中建八局西北建设有限公司,西安 710075

作者简介:

陈美玲(1991—),女,硕士研究生,主要从事土木工程方向的研究,(E-mail)cmling2023@163.com。

通讯作者:

董治(1985—),女,博士,副教授,主要从事交通运输规划与管理方向的研究,(E-mail)dongzhi@163.com。

中图分类号:

TE377


Damage process and failure mode of stratified shale under uniaxial load
Author:
Affiliation:

1.Capital Construction Division, Chang’an University, Xi’an 710075, P. R. China;2.College of Transportation Engineering, Chang’an University, Xi’an 710075, P. R. China;3.Institute of Science, Chang’an University, Xi’an 710075, P. R. China;4.Northwest Construction Limited Company of China Construction Eighth Engineering Division, Xi’an 710075, P. R. China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    低渗透性是制约页岩气开采的主要因素之一,而岩体内裂隙的类型及复杂程度又是制约渗透率的关键因素,因此,加强页岩损伤破坏过程的研究对于提升页岩气开采效率意义重大。文中采用试验与数值模拟相结合的方法,深入研究单轴荷载下含层理页岩的损伤演化、裂纹发育、分形特征以及影响因素等内容。结果表明:试件加载过程中,微裂纹发育整体呈“平稳上升—基本稳定—快速上升”变化趋势;微裂纹发育阶段,0°和90°层理角度下,以拉伸裂纹发育为主,其占比依次为94.7%和96%;30°和60°层理角度下,以剪切裂纹发育为主,占比依次为65%和86.9%。试件宏观破坏裂纹具有明显的分形特征,0°、30°、60°和90°层理角度下,宏观裂纹的分形维数依次为4.25、3.44、2.06和3.60,说明当荷载与层理方向相互垂直时,更易形成复杂裂纹。损伤发育规律受层理的影响,0°和90°层理角度下,损伤集中于基质内发育;30°和60°层理角度下,损伤则集中于层理处发育。此外,损伤受岩石的非均质性和各向异性的影响,随着弹性模量方差的增加,试件的均质性减弱,同等荷载下的损伤范围增强,而随着层理刚度的增加,试件的各向异性减弱,同等荷载下的损伤范围增强。

    Abstract:

    Low permeability is one of the main factors restricting shale gas exploitation, and the type and complexity of fractures in rock mass are key factors affecting permeability. Therefore, strengthening the study of shale damage and failure process is of great significance for improving the efficiency of shale gas exploitation. In this study, based on a combination of experimental methods and numerical simulations, the damage evolution, crack development, fractal characteristics, and influencing factors of stratified shale under uniaxial load are deeply investigated. The results show that the development of micro-cracks follows a trend of “steady rise - basically stable - rapid rise” during the loading of specimens. In terms of the stages of micro-crack development, tensile cracks dominate at 0° and 90° bedding angles with proportions of 94.7% and 96%, respectively, while shear cracks dominate at 30° and 60° bedding angles with proportions of 65% and 86.9%, respectively. The macroscopic failure cracks exhibit obvious fractal characteristics, with fractal dimensions of 4.25, 3.44, 2.06 and 3.60 at bedding angles of 0°, 30°, 60° and 90°, indicating that complex cracks are more likely to form when the load is perpendicular to the bedding direction. The law of damage development is affected by bedding orientation. Damage is concentrated in the matrix at 0° and 90° bedding angles and in the bedding at 30° and 60° bedding angles. In addition, damage is affected by the heterogeneity and anisotropy of the rock. For example, with an increase in the variance of the elastic modulus, the homogeneity of the specimen decreases, and the damage range under the same load increases. Conversely, with an increase in bedding stiffness, the anisotropy of the specimen decreases, and the damage range under the same load increases.

    参考文献
    [1] 胡嘉, 姚猛. 页岩气水平井多段压裂产能影响因素数值模拟研究[J]. 石油化工应用, 2013, 32(5): 34-39.Hu J, Yao M. Multiple fracturing of horizontal well in shale gas productivity factors numerical simulation researching[J]. Petrochemical Industry Application, 2013, 32(5): 34-39.(in Chinese)
    [2] 曾波, 王星皓, 黄浩勇, 等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术, 2020, 48(5): 77-84.Zeng B, Wang X H, Huang H Y, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84.(in Chinese)
    [3] 梁兴, 朱炬辉, 石孝志, 等. 缝内填砂暂堵分段体积压裂技术在页岩气水平井中的应用[J]. 天然气工业, 2017, 37(1): 82-89.Liang X, Zhu J H, Shi X Z, et al. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling[J]. Natural Gas Industry, 2017, 37(1): 82-89.(in Chinese)
    [4] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. (in Chinese)
    [5] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.(in Chinese)
    [6] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.Zou C N, Zhao Q, Dong D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.(in Chinese)
    [7] 卢义玉, 赵贵林, 汤积仁, 等. 页岩平行/垂直层理剪切裂缝导流特性对比研究[J]. 岩石力学与工程学报, 2024, 43(2): 298-307.Lu Y Y, Zhao G L, Tang J R, et al. Comparative study of shale parallel/vertical laminar shear fracture inflow characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2): 298-307.(in Chinese)
    [8] 张闯, 任松, 吴斐, 等. 循环荷载下含层理页岩渗透特性试验研究[J]. 岩土力学, 2022, 43(3): 649-658.Zhang C, Ren S, Wu F, et al. Experimental study on the permeability characteristics of laminated shale under cyclic loading[J]. Rock and Soil Mechanics, 2022, 43(3): 649-658.(in Chinese)
    [9] Jin Z F, Li W X, Jin C R, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 124-137.
    [10] 腾俊洋, 张宇宁, 唐建新, 等. 单轴压缩下含层理加锚岩石力学特性研究[J]. 岩土力学, 2017, 38(7): 1974-1982, 1998.Teng J Y, Zhang Y N, Tang J X, et al. Mechanical behaviors of anchored bedding rock under uniaxial compression[J]. Rock and Soil Mechanics, 2017, 38(7): 1974-1982, 1998.(in Chinese)
    [11] Li C B, Xie H P, Wang J. Anisotropic characteristics of crack initiation and crack damage thresholds for shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104178.
    [12] 陈天宇, 冯夏庭, 张希巍, 等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1772-1779.Chen T Y, Feng X T, Zhang X W, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772-1779. (in Chinese)
    [13] 王辉, 李勇, 曹树刚, 等. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究[J]. 岩石力学与工程学报, 2020, 39(5): 912-926.Wang H, Li Y, Cao S G, et al. Brazilian splitting test study on crack propagation process and macroscopic failure mode of pre-cracked black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 912-926. (in Chinese)
    [14] 侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612.Hou P, Gao F, Yang Y G, et al. Effect of bedding plane direction on acoustic emission characteristics of shale in Brazilian tests[J]. Rock and Soil Mechanics, 2016, 37(6): 1603-1612. (in Chinese)
    [15] 杨志鹏, 何柏, 谢凌志, 等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学, 2015, 36(12): 3447-3455, 3464.Yang Z P, He B, Xie L Z, et al. Strength and failure modes of shale based on Brazilian test[J]. Rock and Soil Mechanics, 2015, 36(12): 3447-3455, 3464. (in Chinese)
    [16] Li C B, Ba?ant Z P, Xie H P, et al. Anisotropic microplane constitutive model for coupling creep and damage in layered geomaterials such as gas or oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104074.
    [17] Li C B, Gao C, Xie H P, et al. Experimental investigation of anisotropic fatigue characteristics of shale under uniaxial cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104314.
    [18] Park B, Min K B. Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 243-255.
    [19] Park B, Min K B, Thompson N, et al. Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 120-132.
    [20] Chong Z H, Li X H, Hou P, et al. Numerical investigation of bedding plane parameters of transversely isotropic shale[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1183-1204.
    [21] 蒋翔. 基于声发射的煤岩单轴压缩雪崩动力学及其应用研究[D]. 重庆: 重庆大学, 2017.Jiang X. Avalanches dynamics and its application in mining materials under uniaxial compression basted on acoustic emission[D].Chongqing: Chongqing University, 2017. (in Chinese)
    [22] Wang M M, Xiao L H. The b-value analysis of bedded shale under cyclic loading tests[J]. Journal of Geophysics and Engineering, 2018, 15(4): 1291-1299.
    [23] 龚囱, 李长洪, 赵奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报, 2015, 40(S1): 85-92.Gong C, Li C H, Zhao K. Characteristics of acoustic emission b-value of short-term creep of red sandstone[J]. Journal of China Coal Society, 2015, 40(S1): 85-92. (in Chinese)
    [24] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission[J]. Construction and Building Materials, 2010, 24(12): 2339-2346.
    [25] Md Nor N, Ibrahim A, Muhamad Bunnori N, et al. Acoustic emission signal for fatigue crack classification on reinforced concrete beam[J]. Construction and Building Materials, 2013, 49: 583-590.
    [26] Wang M M, Tan C X, Meng J, et al. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission[J]. Journal of Geophysics and Engineering, 2017, 14(4): 930-938.
    [27] 腾俊洋, 唐建新, 张宇宁, 等. 单轴压缩下层状含水页岩损伤破坏过程及特征[J]. 岩土力学, 2017, 38(6): 1629-1638, 1646.Teng J Y, Tang J X, Zhang Y N, et al. Damage process and characteristics of layered water-bearing shale under uniaxial compression[J]. Rock and Soil Mechanics, 2017, 38(6): 1629-1638, 1646. (in Chinese)
    [28] Chen H R, Di Q Y, Zhang W X, et al. Effects of bedding orientation on the failure pattern and acoustic emission activity of shale under uniaxial compression[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(1): 20.
    [29] 申海萌, 李琦, 李霞颖, 等. 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.Shen H M, Li Q, Li X Y, et al. Laboratory experiment and numerical simulation study on brittle failure characteristics of shale in Longmaxi Formation in southern Sichuan under different stress conditions[J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262. (in Chinese)
    [30] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414.Hou Z K, Yang C H, Wang L, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407-414. (in Chinese)
    [31] Rybacki E, Reinicke A, Meier T, et al. What controls the mechanical properties of shale rocks? -Part I: strength and Young’s modulus[J]. Journal of Petroleum Science and Engineering, 2015, 135: 702-722.
    [32] Bourne S J. Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 2395.
    [33] Amann F, Button E A, Evans K F, et al. Experimental study of the brittle behavior of clay shale in rapid unconfined compression[J]. Rock Mechanics and Rock Engineering, 2011, 44(4): 415-430.
    [34] 沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法[J]. 无损检测, 2002, 24(2): 72-77.Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals[J]. Nonde Structive Testing, 2002, 24(2): 72-77. (in Chinese)
    [35] 王登科, 魏强, 魏建平, 等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报, 2020, 49(1): 103-109, 122.Wang D K, Wei Q, Wei J P, et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology, 2020, 49(1): 103-109, 122.(in Chinese)
    [36] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671.Zhang Y B, Xu Y D, Liu X X, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT[J]. Rock and Soil Mechanics, 2021, 42(10): 2659-2671.(in Chinese)
    [37] 付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(2): 568-578.Fu Y, Chen X, Feng Z L. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2): 568-578.(in Chinese)
    相似文献
    引证文献
引用本文

陈美玲,郭红光,董治,孟振江,吴彦成.单轴荷载下含层理页岩损伤破坏过程及破坏模式研究[J].重庆大学学报,2024,47(8):152-166.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-26
  • 在线发布日期: 2024-09-02
文章二维码