结合GAFCNN的操动机构弹簧储能状态智能辨识
CSTR:
作者:
作者单位:

1.温州大学 机电工程学院,浙江 温州 325035;2.嘉兴南湖学院 机电工程学院, 浙江 嘉兴 314001;3.集美大学 海洋装备与机械工程学院,福建 厦门 361021

作者简介:

施贻铸(1998—),男,硕士研究生,主要从事断路器操动机构状态检测研究,(E-mail) 1712321467@qq.com。

通讯作者:

孙维方,男,博士,硕士研究生导师, (E-mail)vincent_suen@126.com。

中图分类号:

TM561

基金项目:

浙江省自然科学基金资助项目(LQ21E050003)。


Intelligent identification method of spring energy storage state of circuit breaker operating mechanism based on GAF and CNN
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China;2.College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, P. R. China;3.College of Marine Equipment and Mechanical Engineering, Jimei University,Xiamen, Fujian 361021, P. R. China

Fund Project:

Supported by the Natural Science Foundation of Zhejiang Province (LQ21E050003).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field, GAF)与卷积神经网络(convolutional neural network, CNN),提出了一种弹簧储能状态智能辨识方法,并成功应用于断路器操动机构。采用格拉姆角场将采集到的时域信号进行二维化处理,并利用其进行操动机构动态特性演化过程的追踪。断路器操动机构状态辨识实验验证了所提出的智能诊断方法有效性(识别成功率接近100.00%),为断路器在役状态的鲁棒识别提供一种可能。

    Abstract:

    Robust identification of the spring energy state in circuit breaker operating mechanism is of great significance for maintaining service performance. However, establishing a mapping relationship between the sampled signal and the spring energy storage state remains a key challenge limiting its widespread application. To solve this problem, this study proposes an intelligent identification method that combines Gramian angular field(GAF) and convolutional neural network(CNN) and successfully applies it to the operating mechanism of a circuit breaker. In the proposed method, GAF is used to transform the collected time-domain signal into a two-dimensional representation, which helps track the evolution process of the dynamic characteristics of the operating mechanism. The state identification experiment of the circuit breaker operating mechanism verifies the effectiveness of the proposed intelligent diagnosis method, achieving a recognition success rate close to 100.00%. This method offers a promising approach for the robust identification of the in-service state of circuit breakers.

    参考文献
    相似文献
    引证文献
引用本文

施贻铸,满天雪,周余庆,任燕,沈志煌,孙维方.结合GAFCNN的操动机构弹簧储能状态智能辨识[J].重庆大学学报,2024,47(9):30-38.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-09
  • 出版日期:
文章二维码