基于气动肌肉驱动的关节自抗扰控制
作者:
作者单位:

重庆大学 机械与运载工程学院,重庆 400044

作者简介:

黄国勤(1976—),男,副教授,博士,主要从事流体传动与智能控制、机器人技术研究,(E-mail) huangguoqin@cqu.edu.cn。

中图分类号:

TP242

基金项目:

国家重点研发计划资助项目(2019YFB1703600);国家自然科学基金资助项目(62033001)。


Auto disturbance rejection control of joints driven by pneumatic muscles
Author:
Affiliation:

College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Key R&D Program of China (2019YFB1703600), and National Natural Science Foundation of China (62033001).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决气动人工肌肉驱动的下肢康复机器人轨迹跟踪中存在外界干扰和系统参数不确定的问题,提出了一种关节控制自抗扰算法。该方法在气动人工肌肉关节伺服控制系统数学模型基础上,通过三阶状态扩张观测器对系统状态及系统干扰进行估计,对干扰进行实时补偿,并基于分离性原理进行参数整定;利用气动人工肌肉试验平台对控制系统进行定角度条件下的阶跃信号跟踪控制、方波跟踪控制和正弦跟踪控制对比验证实验。实验结果表明:所设计的自抗扰控制器较比例-积分-微分(proportion integration differentiation,PID)控制器响应时间更快、控制误差更低,满足下肢康复机器人的应用控制要求。

    Abstract:

    To solve the problems of external interference and system parameter uncertainty in the trajectory tracking of a lower limb rehabilitation robot driven by pneumatic artificial muscles, an active disturbance rejection algorithm for joint control is proposed. Based on the mathematical model of the servo control system of the pneumatic artificial muscle joint, the method firstly estimates the system state and disturbance using a third-order state expansion observer. It then compensates for the disturbance in real time and adjusts the parameters based on the separation principle. Subsequently, with using a pneumatic artificial muscle test platform, the step signal tracking control, square wave tracking control, and sine tracking control of the control system are compared and verified under fixed angle conditions. Experimental results show that the designed active disturbance rejection control (ADRC) has a faster response time and lower control error than the proportional integral differential (PID)controller, meeting the application control requirements of the lower limb rehabilitation robot.

    参考文献
    [1] 刘延斌, 庞翔元, 张彦斌, 等. 踝关节康复机器人主动训练柔顺控制研究[J]. 系统仿真学报, 2020, 32(1): 54-60.Liu Y B, Pang X Y, Zhang Y B, et al. Research on active training compliance control of ankle rehabilitation robot[J]. Journal of System Simulation, 2020, 32(1): 54-60.(in Chinese)
    [2] 王斌锐, 周唯逸, 许宏. 智能气动肌肉的静态驱动特性研究[J]. 农业机械学报, 2009, 40(3): 208-212, 193.Wang B R, Zhou W Y, Xu H. Static actuating characteristics of intelligent pneumatic muscle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 208-212, 193.(in Chinese)
    [3] 杨玉贵, 彭光正, 王涛, 等. 具有固定重力补偿的模糊免疫PD控制在气动人工肌肉驱动机械手位置控制中的应用[J]. 机器人, 2008, 30(3): 259-263.Yang Y G, Peng G Z, Wang T, et al. Application of fuzzy immune PD controller with fixed gravity compensation to displacement control for manipulator actuated by pneumatic muscle actuator[J]. Robot, 2008, 30(3): 259-263.(in Chinese)
    [4] 张云, 郭振武, 陈迪剑, 等. 基于Kimura振荡器和虚拟模型的气动肌肉四足机器人步态控制[J]. 兵工学报, 2018, 39(7): 1411-1418.Zhang Y, Guo Z W, Chen D J, et al. Gait control of quadruped robot driven by pneumatic muscle based on kimura oscillator and virtual model[J]. Acta Armamentarii, 2018, 39(7): 1411-1418. (in Chinese)
    [5] Zhang D H, Zhao X G, Han J D. Active model-based control for pneumatic artificial muscle[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1686-1695.
    [6] 王斌锐, 张斌, 沈国阳, 等. 级联气动肌肉仿人肘关节建模与模糊控制[J]. 机器人, 2017, 39(4): 474-480.Wang B R, Zhang B, Shen G Y, et al. Modeling and fuzzy control of humanoid elbow driven by cascaded pneumatic muscles[J]. Robot, 2017, 39(4): 474-480.(in Chinese)
    [7] Zhao X G, Ma H Y, Ye D, et al. Independent stiffness and force control of antagonistic pneumatic artificial muscles joint[C]// International Conference on Advanced Robotics and Mechatronics.IEEE, 2017:734-739.
    [8] 龚道雄, 何睿, 于建均, 等. 一种气动肌肉拮抗驱动机器人关节的类人运动控制方法[J]. 机器人, 2019, 41(6): 803-812.Gong D X, He R, Yu J J, et al. A human-like motion control method for robotic joint actuated by antagonistic pneumatic muscles[J]. Robot, 2019, 41(6): 803-812.(in Chinese)
    [9] Hao L N, Yang H, Sun Z Y, et al. Modeling and compensation control of asymmetric hysteresis in a pneumatic artificial muscle[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(19): 2769-2780.
    [10] Tondu B, Ippolito S, Guiochet J, et al. A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots[J]. The International Journal of Robotics Research, 2005, 24(4): 257-274.
    [11] Zhu X C, Tao G L, Yao B, et al. Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(4): 441-450.
    [12] Gao Z Q. From linear to nonlinear control means: a practical progression[J]. ISA Transactions, 2002, 41(2):177-189.
    [13] 韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社, 2008.Han J Q. Active disturbance rejection control technology: control technology for estimating and compensating uncertain factors[M]. Beijing: National Defense Industry Press, 2008.(in Chinese)
    [14] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C] //Proceedings of the American Control Conference. New York: IEEE, 2003: 4989-4996.
    [15] Fu C F, Tan W. A new method to tune linear active disturbance rejection controller[C]//2016 American Control Conference (ACC). Boston: IEEE, 2016: 1560-1565.
    [16] 齐晓慧, 李杰, 韩帅涛. 基于BP神经网络的自适应自抗扰控制及仿真[J]. 兵工学报, 2013, 34(6): 776-782.Qi X H, Li J, Han S T. Adaptive active disturbance rejection control and its simulation based on BP neural network[J]. Acta Armamentarii, 2013, 34(6): 776-782.(in Chinese)
    [17] 向望. 气动肌腱式下肢康复机器人设计与关节控制研究[D]. 重庆: 重庆大学, 2020.Xiang W. Research on design and joint control of pneumatic tendon-driven lower limb rehabilitation robot[D]. Chongqing: Chongqing University, 2020. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄国勤,米俊丞,左思红.基于气动肌肉驱动的关节自抗扰控制[J].重庆大学学报,2024,47(9):51-60.

复制
分享
文章指标
  • 点击次数:1193
  • 下载次数: 459
  • HTML阅读次数: 169
  • 引用次数: 0
历史
  • 收稿日期:2022-05-12
  • 在线发布日期: 2024-10-09
文章二维码