多尺度纤维增强乐山大佛修复材料的性能研究
作者:
作者单位:

1.1a复旦大学,文物与博物馆学系,上海 200433;2.1b复旦大学,华古籍保护研究院,上海 200433;3.乐山大佛石窟研究院,四川 乐山 614099

作者简介:

王奕(1998—),女,博士研究生,主要从事石质文物保护材料方向的研究,(E-mail)ebanwang@163.com。

通讯作者:

王金华,男,教授,博士生导师,主要从事石窟寺与土遗址保护研究方向的研究,(E-mail)jinhuawang@fudan.edu.cn。

基金项目:

国家重点研发计划(2021YFC1523400);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0095)。


Properties of multi-scale fiber reinforced restoration materials for Leshan Giant Buddha
Author:
Affiliation:

1.1aa. Department of Cultural Relics and Museology, Fudan University, Shanghai, 200433, P. R. China;2.1bChinese Academy of Ancient Books Protection and Research, Fudan University, Shanghai, 200433, P. R. China;3. Leshan Giant Buddha Scenic Area Grottoes Research Institute, Leshan, Sichuan614099, P. R. China

Fund Project:

Supported by the National Key R&D Program of China (2021YFC1523400) and the Special Key Project for Technological Innovation and Application Development in Chongqing(CSTB2022TIAD-KPX0095).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    混合捶灰是乐山大佛修缮中使用的一种兼具气硬性与水硬性的修复材料。为解决大佛头面部等多处的修复材料受赋存环境影响而出现的开裂、剥落等问题,采用黄麻纤维(hemp fiber,HF)和碳酸钙晶须微纤维(carbonate whisker fiber,CWF)复掺的方式对其进行增强。结果表明,HF在提升材料抗折强度方面的表现优于CWF,而CWF的掺入则有效提升了材料韧性和劈裂抗拉强度,二者复掺能够取得综合性的增强效果。28 d时,复掺试件的抗折强度较未掺杂时最大提升程度为35.73%,劈裂抗拉强度最大提升程度为20.88%,均高于对应掺量的单掺组试件。此外,复掺组试件在耐水性和耐酸性测试中的表现优于对照组和单掺组,这表明多尺度纤维复掺的方法有助于实现材料强度与耐候性的综合提升。

    Abstract:

    Mixed hammered ash, with both hydraulic and air hardening properties, was used in restoring Leshan Giant Buddha. To solve the problems of cracking and peeling in the Buddha’s head and face caused by environmental factors, hemp fiber (HF) and calcium carbonate whisker fiber (CWF) were added to enhance the material. Results show that HF outperforms CWF in improving flexural strength, while adding CWF effectively enhances toughness and tensile strength. The combination of the two achieves a comprehensive strengthening effect. After 28 days of curing, composite specimens show a 35.73% increase in flexural strength and 20.88% in tensile strength, outperforming single-doped groups and showing better water and acid resistance. This multi-scale fiber composite method achieves a comprehensive improvement in material strength and weather resistance.

    参考文献
    [1] 钟世航, 黄克忠. 用物探技术探查乐山大佛内部状况[J]. 工程地球物理学报, 2004, 1(3): 226-230.Zhong S H, Huang K Z. Using geophysical technology to explore great stone statue Buddha in Leshan[J]. Chinese Journal of Engineering Geophysics, 2004, 1(3): 226-230. (in Chinese)
    [2] 孙博, 申喜旺, 杨天宇, 等. 乐山大佛胸腹部修复材料劣化特征研究[J]. 中华建设, 2019(11): 120-125.Sun B, Shen X W, Yang T Y, et al. Study on deterioration characteristics of chest and abdomen repair materials of Leshan Giant Buddha[J]. China Construction, 2019(11): 120-125. (in Chinese)
    [3] 四川省文物考古研究所, 乐山大佛乌尤文物保护管理局. 治理乐山大佛的前期研究[M]. 成都: 四川科学技术出版社, 2002.Sichuan Provincial Research Instutute of Archaeology and Cultural Relics, Wuyou Cultural Heritage Protection Bureau of Leshan Giant Buddha. Preliminary study on the governance of Leshan Giant Buddha[M]. Chengdu: Sichuan Scientific & Technical Publishers, 2002. (in Chinese)
    [4] 李黎, 赵林毅, 李最雄. 中国古建筑中几种石灰类材料的物理力学特性研究[J]. 文物保护与考古科学, 2014, 26(3): 74-84.Li L, Zhao L Y, Li Z X. Study on the physical and mechanical properties of several lime materials in ancient Chinese architecture[J]. Sciences of Conservation and Archaeology, 2014, 26(3): 74-84. (in Chinese)
    [5] 贺鹏, 王芬, 朱建锋, 等. 乐山大佛发髻修复材料失效机理分析[J]. 硅酸盐通报, 2020, 39(6): 1868-1873.He P, Wang F, Zhu J F, et al. Failure mechanism of hair curls repaired materials of the Leshan Giant Buddha[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1868-1873. (in Chinese)
    [6] 乔榛, 孙博, 王逢睿, 等. 偏高岭土改性乐山大佛修复材料龄期性能研究[J]. 硅酸盐通报, 2020, 39(2): 543-551.Qiao Z, Sun B, Wang F R, et al. Age performance of Leshan Giant Buddha restoration material by metakaolin modified[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 543-551. (in Chinese)
    [7] 刘于源, 杨天宇. 乐山大佛胸部险情及治理方向探析[J]. 中共乐山市委党校学报, 2017, 19(6): 79-83.Liu Y Y, Yang T Y. Analysis on the chest danger of Leshan Giant Buddha and its treatment direction[J]. Journal of the Party School of Leshan Municipal Committee of CPC, 2017, 19(6): 79-83. (in Chinese)
    [8] 杨天宇, 刘于源. 乐山大佛保护现状及其综合保护规划[J]. 石窟寺研究, 2018, 8: 384-389.Yang T Y, Liu Y Y. The conservation status and comprehensive protection plan of Leshan Giant Buddha[J]. Cave Temple Studies, 2018, 8: 384-389. (in Chinese)
    [9] 申喜旺, 孙博, 王逢睿, 等. 乐山大佛胸腹部开裂残损区域病害特征及保护措施建议[J]. 工程勘察, 2020, 48(1): 27-33.Shen X W, Sun B, Wang F R, et al. Disease feature and advice for reinforcement measures in cracked and damaged areas of the chest and abdomen of Leshan Giant Buddha[J]. Geotechnical Investigation & Surveying, 2020, 48(1): 27-33. (in Chinese)
    [10] 乔榛, 王捷, 孙博, 等. 玄武岩纤维和聚乙烯醇纤维对传统砂岩文物修复材料性能的影响[J]. 化工新型材料, 2020, 48(11): 64-68.Qiao Z, Wang J, Sun B, et al. Influence of BF/PVAF on traditional restorative material for sandstone cultural relic[J]. New Chemical Materials, 2020, 48(11): 64-68. (in Chinese)
    [11] Xu X, Li Y J, Yu B, et al. A novelty method of multi-scale toughening cement-based materials: reactive powder concrete with endogenous whiskers[J]. Journal of Building Engineering, 2022, 50: 104142.
    [12] Xing X Y, Pei J Z, Shen C C, et al. Performance and reinforcement mechanism of modified asphalt binders with nano-particles, whiskers, and fibers[J]. Applied Sciences, 2019, 9(15): 2995.
    [13] 张勤, 巩稣稣, 赵永胜, 等. 多尺度纤维复合增强水泥基材料的力学性能[J]. 土木与环境工程学报(中英文), 2021, 43(2): 123-129.Zhang Q, Gong S S, Zhao Y S, et al. Mechanical properties of multi-scale fiber compound reinforce cement-based materials[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 123-129. (in Chinese)
    [14] 韩世诚, 张聪, 华渊. 混杂纤维增强应变硬化水泥基复合材料(HyFRSHCC)的力学性能[J]. 硅酸盐通报, 2019, 38(1): 77-82, 87.Han S C, Zhang C, Hua Y. Mechanical properties of hybrid fiber reinforced strain hardening cementitious composites(HyFRSHCC)[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 77-82, 87. (in Chinese)
    [15] 李黎. 高温后多尺度纤维水泥基材料性能演化规律与微观机理[D]. 大连: 大连理工大学, 2019.Li L. Evolutoinary and micro mechanisms of multi-scale fiber reinforced cementitious composites after high temperature exposure[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [16] Zhang C, Cao M L. Fiber synergy in multi-scale fiber-reinforced cementitious composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(9): 862-874.
    [17] Yang Y Y, Zhou Q, Deng Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites, 2022, 128: 104422.
    [18] 姚鑫. 黄麻/PVA纤维水泥土力学及抗裂性能研究[D]. 太原: 太原理工大学, 2021.Yao X. Study on mechanical properties and desiccation cracking behavior of Jute/ PVA fiber reinforced cemented soil[D].Taiyuan: Taiyuan University of Technology, 2021. (in Chinese)
    [19] 刘德明. 典型历史建筑砌体胶结材料力学性能及微观试验研究[D]. 西安: 西安工程大学, 2021.Liu D M. Mechanical properties and microscopic experimental study of masonry cementing materials for typical historical buildings[D]. Xi’an: Xi’an Polytechnic University, 2021. (in Chinese)
    [20] 巩亚琦. 黄麻纤维高强混凝土性能试验研究[D]. 鞍山: 辽宁科技大学, 2018.Gong Y Q. Experimental study on performance of jute fiber high strength concrete[D]. Anshan: University of Science and Technology Liaoning, 2018. (in Chinese)
    [21] 冯嘉琪. 新型混杂纤维水泥基复合材料拉伸性能研究[D]. 大连: 大连理工大学, 2019.Feng J Q. Tensile properties of new hybrid fiber reinforced cementitious composites(NHyFRCC)[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [22] Cao M L, Khan M, Ahmed S. Effectiveness of calcium carbonate whisker in cementitious composites[J]. Periodica Polytechnica Civil Engineering, 2020, 64(1): 265-75.
    [23] 雷云霄, 曹建新, 王稚阳. 碳酸钙晶须补强炭黑/天然橡胶/丁腈橡胶复合材料的性能研究[J]. 橡胶工业, 2018, 65(4): 389-393.Lei Y X, Cao J X, Wang Z Y. Properties of calcium carbonate whisker reinforced carbon black/NR/NBR composites[J]. China Rubber Industry, 2018, 65(4): 389-393. (in Chinese)
    [24] Xie C P, Cao M L, Lv X J. Optimization of calcium carbonate whisker reinforced cement paste for rheology and fracture properties using response surface methodology[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(3): 859-875.
    [25] 舒代宁, 邓雪锋. 世界遗产乐山大佛景区酸沉降及防治对策研究[C]// 2007中国可持续发展论坛暨中国可持续发展学术年会论文集. 哈尔滨: 黑龙江教育出版社, 2007.Su D N, Deng X F. Study on acid deposition and its control countermeasures in world heritage Leshan Giant Buddha scenic area[C]//Proceedings of 2007 China Sustainable Development Forum and China Sustainable Development Academic Annual Conference. Harbin: Heilongjiang Education Press, 2007. (in Chinese)
    [26] 程远琼, 欧山. 乐山大佛景区酸雨污染趋势及成因分析[C]// 2015年中国环境科学学会学术年会论文集. 深圳:中国环境科学学会, 2015.Cheng Y Q, Ou S. Analysis of acid rain pollution trend and causes in Leshan Giant Buddha scenic area[C]//Proceedings of 2015 Annual Conference of Chinese Society for Environmental Sciences. Shenzhen: Chinese Society for Environmental Sciences, 2015. (in Chinese)
    [27] 周骏一. 乐山大佛基岩酸雨影响评价及防治对策[J]. 乐山师范学院学报, 2004, 19(2): 107-110.Zhou J Y. World cultural, natural heritage: the comment and countermeasures on the influence of acid rain on the basic rock of Grand Buddha[J]. Journal of Leshan Normal University, 2004, 19(2): 107-110. (in Chinese)
    [28] 周骏一, 李晓, 彭斌, 等. 模拟酸雨对乐山大佛基岩影响及其防治对策[J]. 地质灾害与环境保护, 2005, 16(1): 79-84.Zhou J Y, Li X, Peng B, et al. Impacts of the simulated acid rain on bedrock of the Leshan Great Buddha and its countermeasures of prevention[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(1): 79-84. (in Chinese)
    [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土砌块和砖试验方法: GB/T 4111—2013[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test methods for the concret block and brick: GB/T 4111—2013[S]. Beijing: Standars Press of China, 2013. (in Chinese)
    [30] 刘效彬, 崔彪, 张秉坚. 浙江古城墙传统灰浆材料的分析研究[J]. 光谱学与光谱分析, 2016, 36(1): 237-242.Liu X B, Cui B, Zhang B J. The analysis of traditional lime mortars from Zhejiang Province, China[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 237-242. (in Chinese)
    [31] 于湖生. 黄麻纤维用于混凝土增强的研究[D]. 上海: 东华大学, 2010.Yu H S. Study on concrete reinforced with jute fibers[D]. Shanghai: Donghua University, 2010. (in Chinese)
    [32] Chen E, Chen D. The development of whisker-reinforced polymer composites mechanisms[J]. Polymer Materials Science & Engineering, 2006, 22(2): 20-24.
    [33] Li M, Yu J M, Zhang C, et al. Hybrid effect, mechanical properties and enhancement mechanism of oil-well cement stone with multiscale silicon carbide whisker[J]. Journal of Adhesion Science and Technology, 2019, 33(9): 903-920.
    [34] Liu L, Yin N, Kang M Q, et al. Study on CaSO4 whisker reinforcing and toughening mechanisms for polyurethane elastomer[J]. Acta Polymerica Sinica, 2001(2): 245-249.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王奕,张宏斌,杨天宇,王金华.多尺度纤维增强乐山大佛修复材料的性能研究[J].重庆大学学报,2024,47(10):25-36.

复制
分享
文章指标
  • 点击次数:1325
  • 下载次数: 189
  • HTML阅读次数: 162
  • 引用次数: 0
历史
  • 收稿日期:2023-12-29
  • 在线发布日期: 2024-11-14
文章二维码