石窟寺表面泛盐病害热学响应的离散元模拟
作者:
作者单位:

1.上海师范大学 建筑工程学院,上海 201418;2.长沙理工大学 交通运输工程学院,长沙 411000

作者简介:

钟华锹(1998—),男,硕士研究生,主要从事岩土工程方向的研究,(E-mail)1000525982@smail.shnu.edu.cn。

通讯作者:

姚传芹,女,主要从事热化学效应对岩土体物理力学性质的影响方向的研究,(E-mail)cqyao@shnu.edu.cn。

基金项目:

国家重点研发计划资助项目(2019YFC1520600);上海市青年科技英才扬帆计划资助项目(21YF1432700)。


Assessment of the thermal response to efflorescence damage on the surface of grotto temples using the discrete element method
Author:
Affiliation:

1.School of Civil Engineering, Shanghai Normal University, Shanghai201418, P. R. China;2.School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha410114, P. R. China

Fund Project:

Supported by National Key R&D Program of China(2019YFC1520600) and Shanghai Sailing Program (21YF1432700).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    石窟寺长期遭受自然与人为因素破坏,往往会出现多种类型病害。其中,盐害是一种破坏性较大的病害,在表面泛盐阶段对其开展病害程度的量化评估对石窟寺保护利用工作具有重要意义。以甘肃省庆阳市北石窟寺为研究对象,使用PFC 2D软件建立表面泛盐病害模型。采用主动式热红外检测技术并施加外部热源,获取不同泛盐厚度处的升温曲线。结果表明,在相同热激励条件下砂岩表面的温度低于泛盐表面的温度,且泛盐越厚其表面温度越高。归一化后的温度-时间曲线可以使用幂函数拟合,且幂函数指数与泛盐厚度呈现明显的负相关线性关系;可以将其作为升温指数,实现泛盐病害程度的定量化评估。

    Abstract:

    Grotto temples face extensive damage from natural factors and human activities and salt erosion is a critical issue. Quantifying the damage extent in surface salt efflorescence stage is crucial for subsequent preservation efforts. This study investigates salt efflorescence in the North Grotto Temple in Qingyang City, Gansu Province, employing PFC 2D software to simulate surface salt formation. Active thermal infrared detection is used to examine the relationship between temperature changes and efflorescence thickness. Results indicate that when subjected to identical stimuli, the temperature of sandstone surface is lower than that of saltated surfaces and surface temperature increases as salt efflorescence thickness increases. A power function fitting the normalized temperature-time curves reveales a notable negative linear relationship between the exponent and salt efflorescence thickness. This exponent can serve as a warming index, realizing the quantitative assessment of salt efflorescence damage.

    参考文献
    [1] 龙红, 王玲娟. 论中国石窟艺术的设计意匠[J]. 重庆大学学报(社会科学版), 2006, 12(4): 99-109.Long H, Wang L J. Designing intentions of Chinese grotto arts[J]. Journal of Chongqing University (Social Science Edition), 2006, 12(4): 99-109. (in Chinese)
    [2] 王海涛, 王婧. 宋代石窟舞蹈形象研究: 大足石刻的典型性舞蹈造像[J]. 重庆大学学报(社会科学版), 2013, 19(5): 160-165.Wang H T, Wang J. Research on dance images in grottoes in Song Dynasty and the classic dance images in Dazu Rock Carvings[J]. Journal of Chongqing University (Social Science Edition), 2013, 19(5): 160-165. (in Chinese)
    [3] 刘家全, 朱哲皓. 基于有序点云的石窟寺顶板裂隙特征提取[J]. 上海师范大学学报(自然科学版), 2023, 52(3): 360-371.Liu J Q, Zhu Z H. Feature extraction of layered fractures in grotto temple based on ordered point clouds[J]. Journal of Shanghai Normal University (Natural Sciences), 2023, 52(3): 360-371.(in Chinese)
    [4] 曹张喆, 孙满利, 沈云霞, 等. 庆阳北石窟寺盐害发育特征研究[J]. 石窟与土遗址保护研究, 2023, 2(2): 35-48.Cao Z Z, Sun M L, Shen Y X, et al. A study on the characteristics of salt-related damage in the Beishikusi Grottoes at Qingyang[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2023, 2(2): 35-48. (in Chinese)
    [5] 鱼汶. 盐结晶对石质文物的破坏及控制研究[D]. 昆明: 云南大学, 2016.Yu W. Damage and control of salt crystallization on the stone relics[D]. Kunming: Yunnan University, 2016. (in Chinese)
    [6] 王金华, 陈嘉琦, 王乐乐, 等. 我国石窟寺病害及其类型研究[J]. 东南文化, 2022(4): 25-32.Wang J H, Chen J Q, Wang L L, et al. Deterioration patterns of grotto temples in China[J]. Southeast Culture, 2022(4): 25-32. (in Chinese)
    [7] Jia Q Q, Chen W W, Tong Y M, et al. Experimental study on capillary migration of water and salt in wall painting plaster: a case study at Mogao Grottoes, China[J]. International Journal of Architectural Heritage, 2022, 16(5): 705-716.
    [8] 孟田华, 卢玉和, 任建光, 等. 具有预测功能的云冈石窟空鼓病害太赫兹无损检测研究[J]. 云冈研究, 2021, 1(2): 87-93.Meng T H, Lu Y H, Ren J G, et al. Terahertz non-destructive testing technology for the hollowing deterioration of Yungang Grottoes with predictive function[J]. Yungang Research, 2021, 1(2): 87-93. (in Chinese)
    [9] 杨雯, 王晨仰, 刘军民, 等. 无机纳米材料在文物修复与保护中的应用研究[J]. 无机化学学报, 2021, 37(8): 1345-1352.Yang W, Wang C Y, Liu J M, et al. Studies on inorganic nanomaterials for restoration and protection of cultural heritages[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(8): 1345-1352. (in Chinese)
    [10] 曲瑾, 蒋璐蔓, 刘珂, 等. 金沙土遗址盐害分布与演化特征[J]. 文物保护与考古科学, 2023, 35(1): 28-37.Qu J, Jiang L M, Liu K, et al. Distribution and evolution of the salt damage at Jinsha Earthen Site[J]. Sciences of Conservation and Archaeology, 2023, 35(1): 28-37. (in Chinese)
    [11] Wang F, Sheng J, Sfarra S, et al. Multimode infrared thermal-wave imaging in non-destructive testing and evaluation (NDT&E): physical principles, modulated waveform, and excitation heat source[J]. Infrared Physics & Technology, 2023, 135: 104993.
    [12] Napolitano R, Glisic B. Methodology for diagnosing crack patterns in masonry structures using photogrammetry and distinct element modeling[J]. Engineering Structures, 2019, 181: 519-528.
    [13] Randazzo L, Collina M, Ricca M, et al. Damage indices and photogrammetry for decay assessment of stone-built cultural heritage: the case study of the San Domenico Church main entrance portal (South Calabria, Italy)[J]. Sustainability, 2020, 12(12): 5198.
    [14] Sánchez-Aparicio L J, Bautista-de Castro á, Conde B, et al. Non-destructive means and methods for structural diagnosis of masonry arch bridges[J]. Automation in Construction, 2019, 104: 360-382.
    [15] Guo Z Q, Qi Q, Zhang S, et al. Study on the characterization of differential weathering feature based on surface roughness theory and 3D laser scanning: a case study of the Suoyang Ancient City[J]. Journal of Cultural Heritage, 2023, 62: 449-459.
    [16] 赵嘉进, 刘家全, 张得煊, 等. 基于三维激光扫描的石窟寺病害可视化研究[J]. 石窟与土遗址保护研究, 2022, 1(2): 72-80.Zhao J J, Liu J Q, Zhang D X, et al. Research on visualization of cave temple diseases based on 3D laser scanning[J]. Research on Conservation of Cave Temples and Earthen Sites, 2022, 1(2): 72-80. (in Chinese)
    [17] 吴宜峰, 赵金鑫, 乔云飞, 等. 砖石质不可移动文物本体监测/检测技术研究进展[J]. 防灾减灾工程学报, 2022, 42(3): 623-637.Wu Y F, Zhao J X, Qiao Y F, et al. A review of monitoring/detecting technology for immovable brick and stone cultural relics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 623-637.(in Chinese)
    [18] 魏嘉呈, 刘俊岩, 何林, 等. 红外热成像无损检测技术研究发展现状[J]. 哈尔滨理工大学学报, 2020, 25(2): 64-72.Wei J C, Liu J Y, He L, et al. Recent progress in infrared thermal imaging nondestructive testing technology[J]. Journal of Harbin University of Science and Technology, 2020, 25(2): 64-72. (in Chinese)
    [19] Ruiz Valero L, Flores Sasso V, Prieto Vicioso E. In situ assessment of superficial moisture condition in fa?ades of historic building using non-destructive techniques[J]. Case Studies in Construction Materials, 2019, 10: e00228.
    [20] Bisegna F, Ambrosini D, Paoletti D, et al. A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography: a case study[J]. Journal of Cultural Heritage, 2014, 15(2): 199-202.
    [21] 杨文峰. 石质文物病害的热红外检测及定量化评估研究[D]. 上海: 上海师范大学, 2023.Yang W F. Study on thermal infrared detection and quantitative evaluation of stone cultural relics diseases[D]. Shanghai: Shanghai Normal University, 2023. (in Chinese)
    [22] Martínez-Martínez J, Torrero E, Sanz D, et al. Salt crystallization dynamics in indoor environments: stone weathering in the Mu?oz Chapel of the Cathedral of Santa María (Cuenca, Central Spain)[J]. Journal of Cultural Heritage, 2021, 47: 123-132.
    [23] Hu T F, Brimblecombe P, Zhang Z M, et al. Capillary rise induced salt deterioration on ancient wall paintings at the Mogao Grottoes[J]. The Science of the Total Environment, 2023, 881: 163476.
    [24] Zhao J, Luo H J. Transport and crystallization of NaCl solution in porous silicate materials[J]. Journal of Crystal Growth, 2019, 519: 25-34.
    [25] Michette M, Viles H, Vlachou C, et al. Do environmental conditions determine whether salt driven decay leads to powdering or flaking in historic Reigate Stone Masonry at the Tower of London?[J]. Engineering Geology, 2022, 303: 106641.
    [26] 张虎元, 杨盛清, 孙博, 等. 石质文物盐害类型与蒸发速率的关系研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3284-3294.Zhang H Y, Yang S Q, Sun B, et al. Research on the relationship between salt damage types and evaporation rate of stone relics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3284-3294. (in Chinese)
    [27] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 283-353.
    [28] Song L, Chai S B, Li J, et al. Numerical study on compressive mechanical characteristics of filled jointed rock under confining pressure based on PFC[J]. Frontiers in Ecology and Evolution, 2023, 11: 1283479.
    [29] Zhang Y Y, Shao Z S, Wei W, et al. PFC simulation of crack evolution and energy conversion during basalt failure process[J]. Journal of Geophysics and Engineering, 2019, 16(3): 639-651.
    [30] Zhao Z H, Liu Z N, Pu H, et al. Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1293-1303.
    [31] 叶永芃. 红砂岩冻融循环三轴力学特性试验及颗粒流模拟研究[D]. 徐州: 中国矿业大学, 2023.Ye Y P. Triaxial mechanical properties test and particle flow simulation study of freeze-thaw cycle of red sandstone[D].Xuzhou: China University of Mining and Technology, 2023. (in Chinese)
    [32] 罗崇亮, 余云燕, 张璟, 等. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报, 2023, 58(2): 470-478.Luo C L, Yu Y Y, Zhang J, et al. Heat-mass transfer test and coupling model of sulfate saline soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478. (in Chinese)
    [33] Liu D K, Ren D Z, Du K, et al. Impacts of mineral composition and pore structure on spontaneous imbibition in tight sandstone[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108397.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟华锹,赵嘉进,姚传芹,张得煊,李希.石窟寺表面泛盐病害热学响应的离散元模拟[J].重庆大学学报,2024,47(10):110-119.

复制
分享
文章指标
  • 点击次数:1023
  • 下载次数: 174
  • HTML阅读次数: 135
  • 引用次数: 0
历史
  • 收稿日期:2023-12-04
  • 在线发布日期: 2024-11-14
文章二维码