[关键词]
[摘要]
双风轮风电机组是一种新型水平轴式风电机组,可以利用前风轮尾流发电,风能利用系数高,但为了减少前后风轮间流场干涉效应,传动链轴向跨距较单风轮机组更长,造成长跨距柔性机架多点弹性支撑下双风轮风电机组传动链模态特性复杂,潜在共振风险高。文中考虑机架柔性及其与传动链间弹性支撑,利用多体动力学方法建立了双风轮风电机组传动链刚柔耦合动力学模型,分析了传动链耦合振动模式,研究了机架柔性对传动链固有特性的影响。研究结果表明:双风轮风电机组传动链前2阶扭振固有频率分别为5.63 Hz和6.01 Hz,分别对应后、前风轮传动链第1阶扭振固有频率;双风轮风电机组传动链共存在3类系统振动模式,包括前或后风轮传动链局部振动模式、前或后风轮传动链耦合振动模式,以及前与后风轮传动链耦合振动模式;当系统各构件的模态能量主要集中在非扭振方向时,机架柔性会使各构件模态能量朝同侧传动链其余构件或异侧传动链构件转移。
[Key word]
[Abstract]
The dual-rotor wind turbine is an innovative horizontal axis design that harnesses the wake of the front turbine for additional power generation, leading to a higher wind energy utilization coefficient. However,the longer axial span required to minimize the flow field interference between the front and rear turbines complicates the drivetrain’s modal characteristics, raising the risk of resonance due to multi-point elastic support in the flexible frame. This study incorporates frame flexibility and elastic support into a rigid-flexible coupling dynamic model of the drivetrain using multibody dynamics. The analysis of the drivetrain’s coupling vibration modes reveals that the first two torsional vibration natural frequencies are 5.63 Hz and 6.01 Hz, corresponding to the rear and front turbine drivetrains, respectively. The drivetrain exhibits three vibration modes: local vibration in either the front or rear turbine, coupled vibration in either turbine drivetrain, and coupled vibration between both turbines. The study concludes that frame flexibility redistributes modal energy across components, affecting the drivetrain’s natural characteristics.
[中图分类号]
TH113
[基金项目]
国家重点研发计划资助项目(2020YFB1506600);山西省重点研发计划项目(202102060301017);广东省重点研发计划项目(2021B0101230002)。