航空无人机高速长轴转子系统动力学分析
作者:
作者单位:

重庆大学 机械传动国家重点实验室,重庆 400044

作者简介:

郑传威(1999—),男,硕士研究生,主要从事航空齿轮传动系统设计开发,(E-mail)1582488018@qq.com。

通讯作者:

宋朝省,男,教授,博士生导师,(E-mail)chaoshengsong@cqu.edu.cn。

中图分类号:

TH133.2

基金项目:

重庆市杰出青年科学基金资助项目(CSTB2022NSCQ-JQX0026)。


Dynamics analysis of high-speed long-shaft rotor system for aerial UAV
Author:
Affiliation:

State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by Chongqing Funds for Distinguished Young Youths(CSTB2022NSCQ-JQX0026).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    针对某型航空高速长轴转子系统振动问题,考虑不同轴承支撑形式和轴承阻尼,建立了高速长轴转子系统计算模型,基于Ansys Workbench研究了轴承支撑形式与轴承阻尼对临界转速的影响规律。系统在刚性支撑时的临界转速远高于柔性支撑时的临界转速;系统在同为刚性支撑下,考虑轴承阻尼时,临界转速随着阻尼的增大而减小,而随着阶次越高,轴承阻尼对临界转速的影响也逐渐减小。此外,系统在不同位置处的谐响应情况基本一致;系统响应幅值随着不平衡量增大而增大;系统响应幅值随着阻尼增大均呈现增大的趋势。

    Abstract:

    This study addresses the vibration problems in high-speed long-shaft rotor system of an aerial UAV by developing a computational model that incorporates various forms of bearing support and damping. Using Ansys Workbench, the effects of bearing support forms and bearing damping on the critical speed of the rotor system are analyzed. Results indicate that the critical speed is significantly higher with rigid support than with flexible support. When rigid support is combined with bearing damping, the critical speed decreases with the increase of damping, and the influence of bearing damping decreases in higher-order modes. Additionally, the harmonic responses of the system are consistent across different positions, with the response amplitude increasing as the unbalanced load rises. Furthermore, the response amplitude shows an upward trend with increased damping.

    参考文献
    [1] Song H Q, Zhang J F, Zhang F. Rotor strength and critical speed analysis of a vertical long shaft fire pump connected with different shaft lengths[J]. Scientific Reports, 2022(12): 9351.
    [2] De Felice A, Sorrentino S. Damping and gyroscopic effects on the stability of parametrically excited continuous rotor systems[J]. Nonlinear Dynamics, 2021, 103(4): 3529-3555.
    [3] Wang D X, Wang N X, Chen K S. Unbalance response of a magnetic suspended dual-rotor system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(15): 5758-5772.
    [4] Mercier A, Jezequel L, Besset S, et al. Nonlinear analysis of the friction-induced vibrations of a rotor-stator system[J]. Journal of Sound and Vibration, 2019, 443: 483-501.
    [5] Zeng Z K, Zhang D Y, He T, et al. Experimental investigation for the dynamic mechanical properties of a vertical anisotropically supported rotor[J]. Mechanical Systems and Signal Processing, 2023, 184: 109678.
    [6] Kheladi Z, Hamza-Cherif S M, Ghernaout M E A. Critical speeds analysis of spinning laminated composite shaft based on isogeometric analysis[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23(6): 487-509.
    [7] Tchomeni B X, Alugongo A. Theoretical and experimental analysis of an unbalanced and cracked cardan shaft in the vicinity of the critical speed[J]. Mathematical Models in Engineering, 2020, 6(1): 34-49.
    [8] Liu D, Ding S C, Wang Z, et al. Transient response and critical speed analysis of large vertical volute pump[J]. IOP Conference Series: Earth and Environmental Science, 2018, 163: 012048.
    [9] 倪德, 朱如鹏, 陆凤霞, 等. 考虑空间机动飞行的直升机尾传动轴建模与临界转速分析[J]. 航空动力学报, 2015, 30(6): 1520-1528.Ni D, Zhu R P, Lu F X, et al. Modeling and analysis of critical speed for tail drive shaft of helicopter considering space maneuvering flight[J]. Journal of Aerospace Power, 2015, 30(6): 1520-1528.(in Chinese)
    [10] 喻丽华, 谢庆生, 李少波, 等. 高速气浮电主轴转子系统不平衡响应分析[J]. 重庆大学学报, 2014, 37(9): 18-25.Yu L H, Xie Q S, Li S B, et al. Unbalance response analysis of high speed aerostatic motorized spindle rotor system[J]. Journal of Chongqing University, 2014, 37(9): 18-25.(in Chinese)
    [11] 刘准, 廖明夫, 邓旺群, 等. 带有挤压油膜阻尼器的转子系统动力学相似设计[J]. 航空动力学报, 2023, 38(3):546-557.Liu Z, Liao M F, Deng W Q, et al. Similar design of rotor system dynamics with extruded oil film dampers[J]. Journal of Aerodynamics, 2023, 38(3):546-557. (in Chinese)
    [12] 孟凯林. 航空轴向柱塞泵湿转子系统临界转速及不平衡响应分析[D]. 秦皇岛: 燕山大学, 2019.Meng K L. Critical speed and unbalanced response analysis of wet rotor system of aviation axial piston pump[D]. Qinhuangdao: Yanshan University, 2019. (in Chinese)
    [13] 陈雪莲, 曾劲, 马辉, 等. 叶片脱落诱发的转子-盘片系统不平衡响应分析[J]. 航空发动机, 2020, 46(4): 52-57.Chen X L, Zeng J, Ma H, et al. Analysis of unbalanced response of rotor-disk-blades system induced by blade loss[J]. Aeroengine, 2020, 46(4): 52-57.(in Chinese)
    [14] 程浩, 张爱强, 倪德, 等. 计及陀螺效应的高速齿轮轴系涡动现象及临界转速分析[J]. 机械科学与技术, 2023, 42(2):173-180.Cheng H, Zhang A Q, Ni D, et al. Analysis of vortex phenomenon and critical speed of high-speed gear shaft system with gyroscopic effect[J]. Mechanical Science and Technology, 2023, 42(2):173-180. (in Chinese)
    [15] 邓旺群, 王桢, 舒斯荣, 等. 涡轴发动机细长柔性转子动力特性及高速动平衡技术研究[J]. 振动与冲击, 2012, 31(7): 162-165, 170.Deng W Q, Wang Z, Shu S R, et al. Dynamic characteristics and high speed dynamic balance technique for a power turbine rotor of a turbo-shaft engine[J]. Journal of Vibration and Shock, 2012, 31(7): 162-165, 170.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑传威,宋朝省,吴安阳,王耀禄.航空无人机高速长轴转子系统动力学分析[J].重庆大学学报,2025,48(1):1-9.

复制
分享
文章指标
  • 点击次数:170
  • 下载次数: 114
  • HTML阅读次数: 31
  • 引用次数: 0
历史
  • 收稿日期:2023-04-15
  • 在线发布日期: 2025-02-19
文章二维码