点蚀故障下行星齿轮传动振动特性
作者:
作者单位:

重庆大学 高端装备机械传动全国重点实验室,重庆 400044

作者简介:

彭宇林(1998—),男,硕士研究生,主要从事机械传动、齿轮动力学研究,(E-mail) pengyl_4511@163.com。

通讯作者:

魏静,男,教授,博士生导师,(E-mail) weijing_slmt@163.com。

中图分类号:

TH113.1

基金项目:

国家重大研究项目资助(J2019-IV-0018-0086)。


Vibration characteristics of planetary gear transmission under pitting faults
Author:
Affiliation:

State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Major Research Project of China(J2019-IV-0018-0086).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    文章基于赫兹接触理论的碰撞函数设置齿轮接触,建立健康、轻度、中度、重度不同齿轮点蚀多柔体动力学模型并进行仿真,分析了不同点蚀情况下行星齿轮时频域振动响应。搭建行星齿轮箱振动试验平台,获取了行星齿轮振动响应信号并验证行星齿轮点蚀多柔体动力学模型的正确性和合理性,研究了行星齿轮传动齿面点蚀形貌演化过程。研究结果表明:Y方向振动速度有效值和峰峰值随着点蚀复杂程度增加而增加;有点蚀模型振动速度和加速度出现明显边频信号,试验结果基本与仿真相符;发现了微点蚀和巨点蚀在扩展过程中宽度、深度的变化情况。

    Abstract:

    This study investigates the vibration characteristics of planetary gear transmissions subjected to pitting faults. Gear contacts are modeled using the Hertzian contact theory, and multi-flexible body dynamics models are established and simulated for gears in healthy, mild, moderate and severe states of pitting damage. The time-frequency domain vibration responses of planetary gears are analyzed under these different conditions of pitting corrosion. A vibration test platform for planetary gearboxes is built to capture the vibration response signals, which are used to verify the accuracy and reliability of the dynamic model of pitting-induced vibrations. The results show that both the effective and peak-to-peak values of vibration velocity in the Y-direction increase with the severity of the pitting damage. The vibration velocity and acceleration of the slightly corroded model show distinct sideband frequencies, and the experimental results are basically in agreement with the simulation results. Additionally, the study identifies variations in the width and depth of micro-pitting and macro-pitting during their expansion.

    参考文献
    [1] Choy F K, Polyshchuk V, Zakrajsek J J, et al. Analysis of the effects of surface pitting and wear on the vibration of a gear transmission system[J]. Tribology International, 1996, 29(1): 77-83.
    [2] Lin J C, Teng C, Bergstedt E, et al. A quantitatively distributed wear-measurement method for spur gears during micro-pitting and pitting tests[J]. Tribology International, 2021, 157: 106839.
    [3] Liang X H, Liu Z L, Pan J, et al. Spur gear tooth pitting propagation assessment using model-based analysis[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1369-1382.
    [4] Wei J, Zhang A Q, Gao P. A study of spur gear pitting under EHL conditions: theoretical analysis and experiments[J]. Tribology International, 2016, 94: 146-154.
    [5] 李金锴, 陈勇, 臧立彬, 等. 基于有限元法的疲劳点蚀斜齿轮时变啮合刚度分析与试验研究[J]. 机械传动, 2021, 45(12): 1-7.Li J K, Chen Y, Zang L B, et al. Time varying meshing stiffness analysis and experimental study of fatigue pitting helical gear based on finite element method[J]. Journal of Mechanical Transmission, 2021, 45(12): 1-7.(in Chinese)
    [6] Luo Y, Baddour N, Liang M. Dynamical modeling and experimental validation for tooth pitting and spalling in spur gears[J]. Mechanical Systems and Signal Processing, 2019, 119: 155-181.
    [7] Ma H, Li Z W, Feng M J, et al. Time-varying mesh stiffness calculation of spur gears with spalling defect[J]. Engineering Failure Analysis, 2016, 66: 166-176.
    [8] 冯淦淇, 李乐, 籍永建, 等. 基于改进变分模态分解的齿轮点蚀故障诊断[J]. 机械传动, 2022, 46(8): 146-155, 161.Feng G Q, Li L, Ji Y J, et al. Gear pitting fault diagnosis based on improved variational modal decomposition[J]. Journal of Mechanical Transmission, 2022, 46(8): 146-155, 161.(in Chinese)
    [9] Kundu P, Darpe A K, Kulkarni M S. Gear pitting severity level identification using binary segmentation methodology[J]. Structural Control and Health Monitoring, 2020, 27(3): 1-13.
    [10] 杨青乐, 张玲玲, 贾继德, 等. 基于极坐标增强的齿轮早期点蚀故障诊断[J]. 振动与冲击, 2015, 34(24): 7-11.Yang Q L, Zhang L L, Jia J D, et al. Fault diagnosis for gear early pitting based on polar coordinate enhancement[J]. Journal of Vibration and Shock, 2015, 34(24): 7-11.(in Chinese)
    [11] Elasha F, Ruiz-Cárcel C, Mba D, et al. Pitting detection in worm gearboxes with vibration analysis[J]. Engineering Failure Analysis, 2014, 42: 366-376.
    [12] Li S, Kahraman A. A micro-pitting model for spur gear contacts[J]. International Journal of Fatigue, 2014, 59: 224-233.
    [13] 陈勇, 李金锴, 臧立彬, 等. 疲劳点蚀斜齿轮动力学仿真预测与故障识别试验研究[J]. 机械工程学报, 2021, 57(9): 61-70.Chen Y, Li J K, Zang L B, et al. Dynamic simulation and experimental identification for fatigue pitting helical gear fault[J]. Journal of Mechanical Engineering, 2021, 57(9): 61-70.(in Chinese)
    [14] Li Y Z, Ding K, He G L, et al. Vibration mechanisms of spur gear pair in healthy and fault states[J]. Mechanical Systems and Signal Processing, 2016, 81: 183-201.
    [15] 王雄, 董庆兵, 史修江, 等. 基于多轴疲劳准则的齿轮点蚀寿命预测[J]. 摩擦学学报, 2023, 43(1): 92-103.Wang X, Dong Q B, Shi X J, et al. Gear pitting life prediction based on multi-axial fatigue criterion[J]. Tribology, 2023, 43(1): 92-103.(in Chinese)
    [16] 尹华魁. 基于多体动力学的直升机主传动系统典型齿轮故障建模方法研究[D]. 湘潭: 湖南科技大学, 2015.Yin H K. Research on modeling method of the helicopter main drive system’s typical gear fault based on multi-body dynamics[D]. Xiangtan: Hunan University of Science and Technology, 2015. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭宇林,魏静,张爱强,段田堂,颜强.点蚀故障下行星齿轮传动振动特性[J].重庆大学学报,2025,48(1):10-20.

复制
分享
文章指标
  • 点击次数:127
  • 下载次数: 59
  • HTML阅读次数: 53
  • 引用次数: 0
历史
  • 收稿日期:2023-06-20
  • 在线发布日期: 2025-02-19
文章二维码