齿面成形方法对鼓形齿联轴器齿形及其接触性能影响机制
作者:
作者单位:

1.燕山大学 机械工程学院,河北 秦皇岛 066099;2.西安理工大学 机械与精密仪器工程学院,西安 710048

作者简介:

关亚彬(1989—),男,博士,主要从事高性能鼓形齿联轴器传动设计,(E-mail)guanyabinnpu@163.com。

通讯作者:

陈继刚,男,教授,博士生导师,(E-mail) 24000082@qq.com。

中图分类号:

TH132

基金项目:

国家自然科学基金资助项目(52205070,52005402)。


Influence mechanism of tooth surface forming methods on the tooth profile and contact performance of crown gear coupling
Author:
Affiliation:

1.School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066099, P. R. China;2.School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(52205070, 52005402).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [18]
  • | | |
  • 文章评论
    摘要:

    鼓形齿轮齿面成形方法主要有2种:成形方法Ⅰ为滚刀绕位移圆圆心作圆弧运动展成鼓形齿面,成形方法Ⅱ为滚刀绕位移圆圆心作圆弧运动展成鼓形齿面。以上2种成形方法生成的齿形差异及影响机制尚不清楚。因此,基于齿面加工仿真,推导了2种成形方法的齿面模型。采用啮合原理和有限元,建立了几何和承载接触分析模型。对比了2种成形方法的齿形、几何及承载接触特性。结果表明:在位移圆半径相等时,随着位移圆半径的增大,成形方法Ⅰ与Ⅱ的齿形偏差逐渐减小,最大偏差251 μm;成形方法Ⅰ比Ⅱ的齿间载荷分配更加不均匀,最大载荷比最小载荷多702.8%、451.2%;在鼓形量相等下,成形方法Ⅱ的位移圆半径须大于Ⅰ,两者差200 mm,成形方法Ⅰ与Ⅱ的齿间载荷分配接近。

    Abstract:

    Crown gear couplings are primarily manufactured using two tooth surface forming methods. In Forming Method I, the hob centre makes circular motion around the displacement circle center, while in Forming Method II, the gear shaper centre follows the same motion. However, the differences in tooth profiles and the mechanisms influencing their contact performance between these two methods remain unclear. To address this, simulations of the tooth surface machining processes for both forming methods were conducted, and the resulting hub tooth surfaces were modeled. Geometric tooth contact analysis and loaded tooth contact analysis models were established using meshing theory and the finite element method. Comparative analyses of tooth profiles, unloaded, and loaded contact characteristics were performed. Results show that, under identical displacement circle radii, the tooth profile deviations between the two forming methods gradually decreases as the radius increases, with a maximum deviation of 251 μm. Moreover, load sharing among teeth is notably less uniform in Forming Method I than in Forming Method II, with maximum loads exceeding minimum loads by 702.8% and 451.2%, respectively. For equal crowning amounts, Forming Method II requires a larger displacement circle radius than Method I, with a difference of 200 mm. Despite this, the load-sharing performance of both methods becomes comparable under these conditions.

    参考文献
    [1] 余放, 王明为. 舰船减速齿轮装置的加工与设计[M]. 北京: 国防工业出版社, 2009.Yu F, Wang M W. Machining and design of ship deceleration gear device[M]. Beijing: National Defense Industry Press, 2009.(in Chinese)
    [2] 马玉强, 李广, 赵世银, 等. 鼓形齿联轴器啮合计算分析及软件实现[J]. 机车车辆工艺, 2020(6): 4-6, 22.Ma Y Q, Li G, Zhao S Y, et al. Computational analysis and software implementation of crowned gear engagement[J]. Locomotive & Rolling Stock Technology, 2020(6): 4-6, 22.(in Chinese)
    [3] 彭艳, 孙建亮, 张阳, 等. 板带轧机稳定运行动力学模型体系及其工业应用[M]. 北京: 机械工业出版社, 2018.Peng Y, Sun J L, Zhang Y, et al. Dynamic model system of stable operation of strip mill and its industrial application[M]. Beijing: China Machine Press, 2018. (in Chinese)
    [4] Guo Y, Keller J, Wallen R, et al. Design evaluation of wind turbine spline couplings using an analytical model: preprint[R]. Golden: National Renewable Energy Laboratory, 2015: 1-12.
    [5] 卢茜莉, 陈云峰, 吴世祥, 等. 鼓形齿联轴器的曲率系数计算研究[J]. 重型机械, 2022(1): 91-95.Lu Q L, Chen Y F, Wu S X, et al. Research on curvature coefficient calculation of drum gear coupling[J]. Heavy Machinery, 2022(1): 91-95.(in Chinese)
    [6] Alfares M A, Falah A H, Elkholy A H. Clearance distribution of misaligned gear coupling teeth considering crowning and geometry variations[J]. Mechanism and Machine Theory, 2006, 41(10): 1258-1272.
    [7] 魏家麒, 张开林, 姚远. 具有轴间倾角的鼓形齿联轴器啮合状态及受力分析[J]. 机械传动, 2015, 39(9): 1-6.Wei J Q, Zhang K L, Yao Y. Meshing state and force analysis of the crown gear coupling with inter-axial tilt angle[J]. Journal of Mechanical Transmission, 2015, 39(9): 1-6.(in Chinese)
    [8] 关亚彬, 杨小辉, 方宗德, 等. 一种鼓形齿联轴器的侧隙设计方法[J]. 西安交通大学学报, 2019, 53(7): 136-143.Guan Y B, Yang X H, Fang Z D, et al. A backlash design method for crown gear coupling[J]. Journal of Xi’an Jiaotong University, 2019, 53(7): 136-143.(in Chinese)
    [9] 陈春俊, 郑翔, 杨露, 等. 高速动车组鼓形齿式联轴器收缩电阻研究[J]. 机械传动, 2021, 45(10): 15-21.Chen C J, Zheng X, Yang L, et al. Research on constriction resistance of drum gear coupling of high speed EMU[J]. Journal of Mechanical Transmission, 2021, 45(10): 15-21.(in Chinese)
    [10] 肖来元, 廖道训, 易传云. 共轭鼓形齿联轴器多齿接触数值分析与实验[J]. 华中科技大学学报(自然科学版), 2004, 32(2): 61-63.Xiao L Y, Liao D X, Yi C Y. The numerical analysis of the multi-tooth contact in crown gearcoup lings and its experimental research[J]. Journal of Huazhong University of Science and Technology, 2004, 32(2): 61-63.(in Chinese)
    [11] 肖来元, 易传云, 傅国祥. 基于最大拉应变理论的共轭鼓形齿面裂纹研究[J]. 华中理工大学学报, 1997, 25(3): 54-56.Xiao L Y, Yi C Y, Fu G X. A study of cracking on the conjugate crowned tooth flank with the theory of maximum tensile strain[J]. Journal of Huazhong University of Science and Technology, 1997, 25(3): 54-56.(in Chinese)
    [12] Keum B. Analysis of 3-D contact mechanics problems by the finite element and boundary element methods[D]. Cincinnati: University of Cincinnati, 2003.
    [13] Shinoda M, Li S. Software development for 3D design of gear couplings used in railway vehicles[C]//The Proceedings of Mechanical Engineering Congress, Tokyo, Japan, 2019, 1-7.
    [14] Shinoda M, Li S. Study on teeth contact pattern and strength analysis of gear couplings used in railway vehicles[C]//The Proceedings of Conference of Chugoku-Shikoku Branch, Hiroshima, Japan, 2020, 1-5.
    [15] Vondra R, Rehak K, Prokop A. Strain-stress analysis of gear coupling[C]//26th International Conference Engineering Mechanics. Brno, Czech Republic, 2020: 520-523.
    [16] Guo Y, Lambert S, Wallen R, et al. Theoretical and experimental study on gear-coupling contact and loads considering misalignment, torque, and friction influences[J]. Mechanism and Machine Theory, 2016, 98(8): 242-262.
    [17] Spura C. Calculating the deformation and stiffness of involute teeth of gear couplings[J]. Forschung Im Ingenieurwesen, 2015, 79(1/2): 5-15.
    [18] Renzo P C, Kaufman S, De Rocker D E. Gear couplings[J]. Journal of Engineering for Industry, 1968, 90(3): 467-474.
    [19] 齿轮手册编委会. 齿轮手册[M]. 北京: 机械工业出版社, 2004.Gear Manual Editorial Board. Gear manual[M]. Beijing: China Machine Press, 2004.(in Chinese)
    [20] 王森, 王家序, 李俊阳, 等. 基于有限元法的复合摆线行星齿轮副应力分析[J]. 重庆大学学报, 2022, 45(12): 143-156.Wang S, Wang J X, Li J Y, et al. Stress analysis of compound cycloidal planetary gear pair based on finite element method[J]. Journal of Chongqing University, 2022, 45(12): 143-156.(in Chinese)
    [21] 刘延平, 赵永强. 内啮合斜齿轮高精度三维有限元自动建模方法[J]. 机械工程学报, 2022, 58(21): 148-160.Liu Y P, Zhao Y Q. Research on the automatic modelling method for high precision finite element model of internal helical gear[J]. Journal of Mechanical Engineering, 2022, 58(21): 148-160.(in Chinese)
    [22] Feng S, Chang L H, He Z X. A hybrid finite element and analytical model for determining the mesh stiffness of internal gear pairs[J]. Journal of Mechanical Science and Technology, 2020, 34(59): 2477-2485.
    [23] Guan Y B, Fang Z D, Yang X H, et al. Tooth contact analysis of crown gear coupling with misalignment[J]. Mechanism and Machine Theory, 2018, 126(4): 295-311.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

关亚彬,张梦涵,冯和生,陈继刚,刘超.齿面成形方法对鼓形齿联轴器齿形及其接触性能影响机制[J].重庆大学学报,2025,48(1):21-32.

复制
分享
文章指标
  • 点击次数:115
  • 下载次数: 76
  • HTML阅读次数: 52
  • 引用次数: 0
历史
  • 收稿日期:2023-06-13
  • 在线发布日期: 2025-02-19
文章二维码