基于简易视觉标签的高精度室内定位技术
作者:
作者单位:

1.东风柳州汽车有限公司 乘用车技术中心,广西 柳州 515005;2.重庆大学 机械与运载工程学院,重庆 400044

作者简介:

熊禹(1983—),女,高级工程师,主要从事智能驾驶系统集成开发研究,(E-mail)xiongy@dflzm.com。

通讯作者:

高锋,男,教授,(E-mail)gaofeng1@cqu.edu.cn。

中图分类号:

TH7

基金项目:

国家重点实验室开放基金(KFY2209);汽车协同创新中心揭榜挂帅项目(2022CDJDX-004);重庆市技术创新与应用发展专项( CSTB2022TIAD-KPX0139)。


High-accuracy indoor location technology using simple visual labels
Author:
Affiliation:

1.Technology Center of Passenger Car, Dongfeng Liuzhou Automobile Co., Ltd., Liuzhou, Guangxi 515005, P. R. China;2.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by Open Fund of State Key Laboratory (KFY2209), Chongqing Automotive Collaborative Innovation Center (2022CDJDX-004) and Chongqing Technology Innovation and Application Development Project (CSTB2022TIAD-KPX0139).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为实现低成本高精度的室内定位,在综合考虑定位需求和计算复杂性的基础上,设计了一种基于简易视觉标签的室内高精度定位技术。采用简单的颜色和形状特征检测视觉标签,从而降低检测复杂度,减少数据存储需求,针对简易标签特征不唯一问题,设计了基于相机视场和标签方位角的快速查询匹配方法。通过分析标签分布特性与定位误差关系,设计加权最小二乘位姿估计算法,建立迭代求解和最优估计的协同策略,实现了算法复杂度和定位精度的良好平衡。仿真和实验结果表明:所提定位方法能够有效处理超定方程组奇异问题,抑制不良标签组的负面影响,与超宽带技术相比,定位误差降低超过62%。

    Abstract:

    To achieve a low-cost, high-precision indoor location system, this study designs a method using simple visual labels while balancing computation complexity and practical requirements. Only color and shape features are used for label detection, minimizing both detection complexity and data storage needs. To deal with the issue of nonunique solutions caused by simplified label features, a rapid query and matching method is proposed by incorporating the camera’s field of view and the label's azimuth. Furthermore, a pose and position estimation method using a weighted least square algorithm is developed. This method is integrated with an interactive algorithm guided by a designed switching strategy. These techniques strike an effective balance between algorithm complexity and location accuracy. Simulation and experimental results show that the proposed method effectively resolves singularity issues in overdetermined equations and attenuates the negative effects of poorly distributed label groups. Compared with ultra-wideband technology, the proposed approach reduces location error by more than 62%.

    参考文献
    [1] Vladareanu L, Vl?dareanu V, Pop N, et al. Robot extenics control developed by versatile, intelligent and portable robot vipro platform applied on firefighting robots[J]. International Journal of Online and Biomedical Engineering (IJOE), 2020, 16(8): 99-107.
    [2] Ding J Y, Wang Y, Fu S Z, et al. Multiview features fusion and AdaBoost based indoor localization on WiFi platform[J]. IEEE Sensors Journal, 2022, 22(16): 16607-16616.
    [3] Guan K, Ma L, Tan X, et al. Vision-based indoor localization approach based on SURF and landmark[C]// 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2016: 655-659.
    [4] Hong W, Xia H, An X C, et al. Natural landmarks based localization algorithm for indoor robot with binocular vision[C]// Chinese Control and Decision Conference (CCDC). IEEE, 2017: 3313-3318.
    [5] 张梦珠, 黄劲松. 基于语义特征的视觉定位研究[J]. 测绘地理信息, 2022, 47(4): 33-37.Zhang M Z, Huang J S. Research on visual location based on semantic characteristics[J]. Journal of Geomatics, 2022, 47(4): 33-37.(in Chinese)
    [6] Kayhani N, Zhao W D, McCabe B, et al. Tag-based visual-inertial localization of unmanned aerial vehicles in indoor construction environments using an on-manifold extended Kalman filter[J]. Automation in Construction, 2022, 135: 104112.
    [7] 李照, 舒志兵. 一种改进二维码视觉精定位AGV技术研究[J]. 控制工程, 2019, 26(6): 1049-1054.Li Z, Shu Z B. Research on AGV vision precision positioning technology by an improved two-dimensional code[J]. Control Engineering of China, 2019, 26(6): 1049-1054.(in Chinese)
    [8] 徐聪. 基于计算机视觉的室内定位关键技术研究[D]. 成都: 电子科技大学, 2019.Xu C. Research on key technologies of indoor positioning based on computer vision[D].Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
    [9] Li M F, Zhao L C, Tan D, et al. BLE fingerprint indoor localization algorithm based on eight-neighborhood template matching[J]. Sensors, 2019, 19(22): 4859.
    [10] Shao F, Lin W S, Gu S B, et al. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1940-1953.
    [11] 韩锟, 章京涛, 杨穷千. 基于果蝇算法优化的移动机器人RBPF-SLAM研究[J]. 铁道科学与工程学报, 2022, 19(1): 265-272.Han K, Zhang J T, Yang Q Q. Research on RBPF-SLAM for mobile robot based on fruit fly optimization algorithm[J]. Journal of Railway Science and Engineering, 2022, 19(1): 265-272.(in Chinese)
    [12] Gao F, Ma J. Indoor location technology with high accuracy using simple visual tags[J]. Sensors, 2023, 23(3): 1597.
    [13] Lee J K, Wang Y M, Lu C S, et al. The enhancement of graphic QR code recognition using convolutional neural networks[C]// International Conference on Innovation, Communication and Engineering (ICICE). IEEE, 2019: 94-97.
    [14] 王付有, 高成发, 王剑超. 航向角约束的手机RTK航位推算融合定位模型[J]. 测绘科学, 2022, 47(7): 143-148.Wang F Y, Gao C F, Wang J C. Mobile RTK/DR fusion positioning model based on heading angle variation constraint[J]. Science of Surveying and Mapping, 2022, 47(7): 143-148.(in Chinese)
    [15] Park D, Lee S J, Kwon J, et al. Localization of mobile robot based on artificial landmark[J]. The Journal of Korean Institute of Communications and Information Sciences, 2020, 45(12): 2150-2153.
    [16] 程琦, 胡杰, 王均晖, 等. 基于数据驱动的无人机加权最小二乘定位算法[J]. 指挥信息系统与技术, 2020, 11(6): 76-80.Cheng Q, Hu J, Wang J H, et al. Weighted least square positioning algorithm of UAV based on data drive[J]. Command Information System and Technology, 2020, 11(6): 76-80.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

熊禹,高锋,马杰.基于简易视觉标签的高精度室内定位技术[J].重庆大学学报,2025,48(1):45-53.

复制
分享
文章指标
  • 点击次数:105
  • 下载次数: 81
  • HTML阅读次数: 45
  • 引用次数: 0
历史
  • 收稿日期:2023-03-18
  • 在线发布日期: 2025-02-19
文章二维码