风环境性能导向的寒冷地区商业建筑入口外部形式设计
作者:
作者单位:

1.天津大学,建筑学院,天津 300072;2.天津大学,天津市建筑物理环境与生态技术重点实验室,天津 300072;3.新加坡国立大学 设计与环境学院,新加坡117566

作者简介:

任蕾(1994—),女,博士研究生,主要研究方向为建筑性能化设计,(E-mail) labelren@qq.com。

通讯作者:

刘刚,男,教授,主要研究方向为绿色与低能耗建筑,(E-mail) lglgmike@163.com
曲冠华,男,博士研究生,主要研究方向为绿色与低能耗建筑,(E-mail)quguanhua93@126.com。

中图分类号:

TU119+.1

基金项目:

“十三五”国家重点研发计划资助项目(2016YFC0700200);高等学校学科创新引智计划资助项目(B13011)。


Wind-environment-performance-oriented design of exterior entrance forms for commercial buildings in cold regions
Author:
Affiliation:

1.School of Architecture,;2.Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin University, Tianjin 300072, P. R. China,;3.School of Design and Environment, National University of Singapore, Singapore 117566, Singapore

Fund Project:

Supported by the National Key Research and Development Program of China(2016YFC0700200) and the Programme of Introducing Talents of Discipline to Universities (B13011).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    商业建筑入口冷风的高渗透量对建筑运行能耗和人员热舒适造成了极大影响。为提升入口抵抗冷风渗透的性能,文中分析了寒冷地区商业建筑4种典型入口外部形式,并基于FLUENT平台的CFD数值模拟,对各类入口进行多风向的冬季风环境仿真计算。同时,提出“入口综合速度”作为入口风环境性能指标,以评价各入口类型在不同风向条件下的风环境性能。结果表明,入口迎风时,应优先选择凹入口,不宜采用平入口;入口背风时,应优先选择半凸近入口,不宜采用半凸远入口。此外,主导风向为90°、180°和270°的条件下,入口形式可任意选择;而风向多变条件下,凹入口风环境性能最佳,平入口最差。为此,提出了不同风向下的入口外部形式优选策略和提升方法。

    Abstract:

    Air infiltration through building entrances significantly affects the energy consumption and occupant comfort of commercial buildings. To improve the resistance of entrances to air infiltration, this study identifies and evaluates four typical entrance exterior entrance forms of commercial buildings in cold regions. With utilizing the FLUENT platform, multi-directional wind simulations are conducted to assess the performance of these entrance types. A novel metric, “comprehensive velocity” , is introduced to quantify and compare their effectiveness under different wind conditions. Results show that under windward conditions, a concave entrance is more effective than a flat entrance, whereas under leeward conditions, a semi-convex-near entrance is preferable to a semi-convex-far entrance. When the dominant wind directions are 90°, 180° and 270°, any entrance form may be selected; however, under variable wind directions, the concave entrance demonstrates the best performance, with the flat entrance performing the worst. Based on these findings, this study proposes optimization strategies and improvement methods for the exterior design of entrances to enhance their performance under diverse wind conditions.

    参考文献
    [1] Liu X C, Liu X H, Zhang T, et al. On-site measurement of winter indoor environment and air infiltration in an airport terminal[J]. Indoor Built Environment, 2019, 28 (4): 564-578.
    [2] Liu X H, Lin L, Liu X H, et al. Evaluation of air infiltration in a hub airport terminal: On-site measurement and numerical simulation[J]. Building and Environment, 2018, 143: 163-177.
    [3] Mei S J, Hu J T, Liu D, et al. Thermal buoyancy driven flows inside the industrial buildings primarily ventilated by the mechanical fans: local facilitation and infiltration[J]. Energy and Buildings, 2018, 175: 87-101.
    [4] Goubran S, Qi D H, Saleh W F, et al. Comparing methods of modeling air infiltration through building entrances and their impact on building energy simulations[J]. Energy and Buildings, 2017, 138: 579-590.
    [5] Sandberg M, Mattsson M, Wigo H, et al. Viewpoints on wind and air infiltration phenomena at buildings illustrated by field and model studies[J]. Building and Environment, 2015, 92: 504-517.
    [6] 胡萨娜, 苏晓明. 呼和浩特市绿色公共节能建筑入口空间模式研究[J]. 安徽建筑, 2017, 24 (2): 175-177.Hu S N, Su X M. Study on the entrance space model of green public energy-saving buildings in Hohhot[J]. Anhui Architecture, 2017, 24(2): 175-177. (in Chinese)
    [7] Qi S D, Zhou C Y. Energy-saving design research of entrance space for commercial building in cold region[J]. Applied Mechanics and Materials, 2014, 3308(587/588/589): 393-396.
    [8] Frank D, Linden P F. The effects of an opposing buoyancy force on the performance of an air curtain in the doorway of a building[J]. Energy and Buildings, 2015, 96: 20-29.
    [9] Qi D H, Goubran S, Wang L Z, et al. Parametric study of air curtain door aerodynamics performance based on experiments and numerical simulations[J]. Building and Environment, 2018, 129: 65-73.
    [10] Shu C, Wang L Z, Zhang C, et al. Air curtain effectiveness rating based on aerodynamics[J]. Building and Environment, 2020, 169: 106582.
    [11] 宗序平. 数理统计学及其应用: 使用MATLAB[M]. 北京: 机械工业出版社, 2016.Zong X P. Mathematical statistics with applications in MATLAB[M]. Beijing: China Machine Press, 2016.(in Chinese)
    [12] 魏莱. 寒冷地区商业综合体被动设计的节能潜力[D]. 天津: 天津大学, 2019.Wei L. Energy-saving potential of passive design for commercial complexes in cold region of China[D]. Tianjin: Tianjin University, 2019. (in Chinese)
    [13] Blocken B. Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations[J]. Building and Environment, 2015, 91: 219-245.
    [14] Fiveland W A. Three-dimensional radiative heat transfer solutions by the discrete ordinates method[J]. Journal of Thermophysics and Heat Transfer, 1988, 2 (4): 309-316.
    [15] Marvin J G. Book review turbulence modeling for CFD[J]. AIAA Journal, 1994, 32(6): 1339.
    [16] Bois P A. Asymptotic aspects of the boussinesq approximation for gases and liquids[J]. Geophysical Fluid Dynamics, 2012, 58(1/4):45-55.
    [17] Chen Q. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer, Part B: Fundamentals, 1995, 28 (3):353-369.
    [18] Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper, middle and lower atmosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1996, 58(13): 1421-1447.
    [19] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.Tao W Q. Numerical Heat Transfer[M]. Xi'an: Xi'an Jiaotong University Press, 2001.(in Chinese)
    [20] 朱自强. 应用计算流体力学[M]. 北京: 北京航空航天大学出版社, 1998.Zhu Z Q. Applied computational fluid dynamics [M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1998.(in Chinese)
    [21] 丁祖荣. 工程流体力学[M].北京:机械工业出版社, 2013.Ding Z R. Engineering fluid mechanics[M]. Beijing: China machine press, 2013. (in Chinese)
    [22] Brown T R , Judd D R . Wide range gas flow system with real time flow measurement and correction: U.S. Patent 6,216,726[P]. 2001.
    [23] 杨有涛, 徐英华, 王子钢. 气体流量计[M]. 北京: 中国计量出版社, 2007.Yang Y T, Xu Y H, Wang Z G. Gas meters[M]. Beijing: China Metrology Publishing House, 2007.(in Chinese)
    [24] Lawson T V, Penwarden A D. The effects of wind on people in the vicinity of buildings [C]. Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures. Heathrow: Cambridge University Press, 1975: 605-622.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任蕾,曲冠华,刘刚,原野.风环境性能导向的寒冷地区商业建筑入口外部形式设计[J].重庆大学学报,2025,48(1):54-65.

复制
分享
文章指标
  • 点击次数:93
  • 下载次数: 86
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2021-12-19
  • 在线发布日期: 2025-02-19
文章二维码