基于卷积神经网络的高层建筑智能控制算法研究
作者:
作者单位:

武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070

作者简介:

刘康生(1995—),男,硕士研究生,主要从事土木工程振动控制的研究,(E-mail)2281585945@qq.com。

通讯作者:

涂建维,男,教授,博士生导师, (E-mail)tujianwei@whut.edu.cn。

中图分类号:

TB381

基金项目:

国家自然科学基金资助项目(51978550);国家重点研发计划资助项目(2018YFC0705601);中央高校基本科研业务费专项资金资助项目(2019-YB-024)。


Research on intelligent structural control algorithm for high-rise buildings based on one-dimensional convolution neural network
Author:
Affiliation:

Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(51978550), Key Research Plan of Ministry of Science and Technology(2018YFC0705601), Fundamental Research Funds for the Central Universities(2019-YB-024).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。

    Abstract:

    Traditional shallow neural networks exhibit low prediction accuracy and poor generalization when handling high-dimensional data. To solve these problems, this study proposes an intelligent control algorithm for high-rise buildings based on one-dimensional convolutional neural networks(1D-CNN) and the deep dream visualization algorithm. The proposed method enables high-precision network model training and visualizes data features through 1D-CNN. Using a 20-story benchmark model as a case study, the damping performance of the 1D-CNN-based intelligent control algorithm was analyzed under different conditions and compared with back propagation(BP) and radial basis function(RBF) algorithms. Results show that 1D-CNN can effectively extract deep data features and reduce the dimensionality of massive datasets by virtue of one-dimensional convolution and pooling operations. Under external excitation, the maximum damping rates for acceleration and displacement achieved by the 1D CNN controller were 69.0% and 55.6% respectively, significantly outperforming BP and RBF. Although the control performance of all algorithms decreased under modified excitation conditions, the 1D-CNN consistently exhibited superior performance and the best generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

刘康生,涂建维,张家瑞,李召.基于卷积神经网络的高层建筑智能控制算法研究[J].重庆大学学报,2025,48(1):66-75.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 在线发布日期: 2025-02-19
文章二维码