工程水泥基复合材料与锈蚀钢筋黏结性能研究
作者:
作者单位:

1.宁夏大学 土木与水利工程学院,银川 750000;2.宁夏土木工程防震减灾工程技术研究中心,银川 750021

作者简介:

李鑫平(1995—),男,硕士研究生,主要从事ECC加固研究,(E-mail)lxptgzy@126.com。

通讯作者:

车佳玲,女,博士,教授,(E-mail)che_jialing@126.com。

中图分类号:

TU502

基金项目:

国家自然科学基金资助项目(52068060)。


Experimental study on bond performance between engineered cementitious composite and corroded rebars
Author:
Affiliation:

1.School of Civil Engineering and Water Conservancy, Ningxia University, Yinchuan 750000, P. R. China;2.Ningxia Civil Engineering Research Center for Earthquake Prevention and Disaster Mitigation Engineering Technology, Yinchuan 750021, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(52068060).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究工程水泥基复合材料(ECC)与锈蚀螺纹钢筋的黏结破坏机理,采用中心拉拔试验方法,分析钢筋锈蚀率、黏结锚固长度、钢筋直径和纤维掺量等因素对黏结性能的影响。结果表明,ECC与锈蚀钢筋的黏结应力-滑移曲线可分为微滑移阶段、滑移阶段、破坏阶段和残余阶段,试件破坏类型为剪切拔出破坏;黏结强度随钢筋锈蚀率的增加先增大后减小,存在临界锈蚀率使得黏结性能最好;钢筋锈蚀率为10%时,试件黏结强度随钢筋锚固长度和钢筋直径的增大而减小;随着纤维体积掺量的增加,黏结韧性指数和黏结强度先增大后减小,纤维体积掺量为2%时,纤维的增韧和阻裂效果最明显。

    Abstract:

    This study investigates the bond failure mechanism between engineered cementitious composite (ECC) and corroded rebars through pull-out experiments. The effects of corrosion rate, bond anchorage length, rebar diameter, and fiber content on bond performance are analyzed. The results show that the bond stress-slip curve can be divided into: micro-slip, slip, failure and residual phases. All specimens exhibit shear pull-out failure as the primary failure mode. The bond strength initially increases and then decreases with the corrosion rate and there is a critical corrosion rate resulting in the warimized bond strength. For rebars with a 10% corrosion rate, bond strength decreases as anchorage length and rebar diameter increase. Additionally, increasing the fiber content enhances the bond toughness index and bond strength initially, followed by a decline. The optimum performance, including maximum toughness and crack resistance, is observed at a fiber content of 2%.

    参考文献
    [1] Victor C, Li S W, Cynthia W. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492 .
    [2] Li M, Li V C. High-early-strength engineered cementitious composites for fast, durable concrete repair-material properties[J]. ACI Materials Journal, 2011, 108(1):3-12.
    [3] Rokugo K, Kanda T, Yokota H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials & Structures, 2009, 42(9):1197-1208.
    [4] 陈文永, 陈小兵, 丁一. ECC高性能纤维增强水泥基材料及其应用[J]. 工业建筑, 2010, 40(S1): 768-772.Chen W Y, Chen X B, Ding Y. ECC high performance fiber reinforced cement-based material and its application[J]. Industrial Construction, 2010, 40(S1): 768-772.(in Chinese)
    [5] 林红威, 赵羽习. 变形钢筋与混凝土黏结性能研究综述[J]. 建筑结构学报, 2019, 40(1): 11-27.Lin H W, Zhao Y X. Bond behavior between concrete and deformed steel bar: a review[J]. Journal of Building Structures, 2019, 40(1): 11-27.(in Chinese)
    [6] 林红威, 赵羽习, 郭彩霞, 等. 锈胀开裂钢筋混凝土粘结疲劳性能试验研究[J]. 工程力学, 2020, 37(1): 98-107.Lin H W, Zhao Y X, Guo C X, et al. Fatigue of the bond behavior of corroded reinforced concrete with corrosion-induced cracks[J]. Engineering Mechanics, 2020, 37(1): 98-107.(in Chinese)
    [7] 刘曙光, 邓轶涵, 张菊, 等. PVA纤维水泥基复合材料与钢筋粘结性能研究[J]. 功能材料, 2016, 47(1): 1110-1116.Liu S G, Deng Y H, Zhang J, et al. Research on bond behavior between PVA fiber reinforced cementitious composites and rebar[J]. Journal of Functional Materials, 2016, 47(1): 1110-1116.(in Chinese)
    [8] 米渊, 潘金龙, 周青山. 钢筋与纤维增强水泥基复合材料粘结性能试验研究[J]. 建筑结构, 2016, 46(15): 69-73.Mi Y, Pan J L, Zhou Q S. Experimental study on bond behavior between steel bars and patterned vertical alignment engineered cementitious composite[J]. Building Structure, 2016, 46(15): 69-73.(in Chinese)
    [9] Chao S H, Naaman A E, Parra-Montesinos G J. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites[J]. ACI Structural Journal, 2009, 106(6): 897-906.
    [10] Cai J M, Pan J L, Tan J W, et al. Bond behaviours of deformed steel rebars in engineered cementitious composites (ECC) and concrete[J]. Construction and Building Materials, 2020, 252: 119082.
    [11] Che J, Wang D, Liu H, et al. Mechanical Properties of desert sand-based fiber reinforced concrete (DS-FRC) [J]. Applied Sciences, 2019, 9(9):1857.
    [12] An X, Che J L, Liu H F, et al. Study on freeze-thaw resistance with NaCl of desert sand engineering cement composites[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2021, 121: 102954.
    [13] 白亮, 周枫, 谢鹏飞, 等. 高延性纤维增强水泥基复合材料力学性能试验研究[J]. 工业建筑, 2017, 47(6): 108-113.Bai L, Zhou F, Xie P F, et al. Experimental research on mechanical properties of engineered cementitious composites[J]. Industrial Construction, 2017, 47(6): 108-113.(in Chinese)
    [14] 生兆亮, 辛欣, 夏多田, 等. 纤维增强水泥基材料强度和微结构的影响因素研究[J]. 硅酸盐通报, 2020, 39(10): 3108-3114.Sheng Z L, Xin X, Xia D T, et al. Influence factors of strength and microstructure of fiber reinforced cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3108-3114.(in Chinese)
    [15] 谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3086-3100.Xie L, Li Q H, Xu S L. Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3086-3100.(in Chinese)
    [16] ASTM C1018-97 Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading) [S]. West Conshohocken,USA: ASTM International, 1997.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李鑫平,车佳玲,刘海峰,王丹.工程水泥基复合材料与锈蚀钢筋黏结性能研究[J].重庆大学学报,2025,48(1):90-97.

复制
分享
文章指标
  • 点击次数:138
  • 下载次数: 80
  • HTML阅读次数: 52
  • 引用次数: 0
历史
  • 收稿日期:2023-04-12
  • 在线发布日期: 2025-02-19
文章二维码