基于D-S证据理论的多智能体系统冲突数据融合机制研究
作者:
作者单位:

1.衡水学院 数学与计算机科学学院,河北 衡水 053000;2.重庆大学 大数据与软件学院,重庆 400044;3.中国电子科技集团公司 第二十九研究所,成都 610036

作者简介:

王娜(1981—),女,副教授,主要从事人工智能与数据分析方向研究,(E-mail)54775265@qq.com。

通讯作者:

夏晓峰(1980—),男,副教授,硕士生导师,主要从事网络空间安全与人工智能方向研究,(E-mail)xiaxiaofeng@cqu.edu.cn。

基金项目:

成都市区域科技创新合作项目(2023-YF11-00018-HZ);国家自然科学基金(62372075)。


Research on mechanism of conflict data fusion in multi-agent systems based on D-S evidence theory
Author:
Affiliation:

1.College of Mathematics and Computer Science, Hengshui University, Hengshui, Hebei 053000, P. R. China;2.School of Bigdata and Software Engineering, Chongqing University, Chongqing 400044, P. R. China;3.29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, P. R. China

Fund Project:

Supported by Regional Science and Technology Innovation Cooperation Program of Chengdu(2023-YF11-00018-HZ) and National Natural Science Foundation of China(62372075).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。

    Abstract:

    The multi-agent information fusion(MAIF) system is smainly aimed at information fusion, regulation, communication, and conflict resolution among multiple agents. A multi-agent system conflict data fusion method combining reconstructed basic probability assignment and belief entropy is proposed to address the issue of D-S evidence theory failure under highly conflicting data conditions. This method uses reconstructed basic probability assignment and belief entropy to correct the reliability of evidence, obtaining more reasonable evidence. Then, the evidence is fused using the Dempster combination rule, and the results are obtained with a confidence level of over 90% in both 2 experiments. The experiment demonstrates the effectiveness of this method and improves the accuracy of the MAIF system identification process.

    参考文献
    [1] 刘辉, 张超勇, 蔡恒志. 采用灰色关联和D-S证据理论的压射工艺参数选择方法[J]. 机械科学与技术, 2023, 42(7): 1055-1062.Liu H, Zhang C Y, Cai H Z. Selection method of injection processing parameter by using grey relational analysis and D-S evidence theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1055-1062. (in Chinese)
    [2] 王祥, 陈发达, 吴贤国, 等. 基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价[J]. 工业建筑, 2023, 53(11): 65-72.Wang X, Chen F D, Wu X G,et al.Stability evaluation of working faces of shield tunnels in karst based on cloud model and D-S evidence theory[J]. Industrial Construction, 2023, 53(11): 65-72. (in Chinese)
    [3] Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976, 24: 314-315.
    [4] 徐洪富. 证据理论融合方法改进研究[D]. 南昌: 江西师范大学, 2019.Xu H F.Research on the improvement of evidence theory fusion method[D]. Nanchang: Jiangxi Normal University, 2019. (in Chinese)
    [5] 秦钰莉, 文力, 魏鹏飞, 等. 丹江口水库库周景观格局动态变化分析[J].人民黄河, 2019, 41(4): 69-73.Qin Y L, Wen L, Wei P F,et al. Analysis on dynamic changes of landscape pattern around danjiangkou reservoir[J]. People’s Yellow River, 2019, 41(4): 69-73. (in Chinese)
    [6] 程腾, 侯登超, 张强, 等. 基于D-S证据理论的多模态结果级融合框架研究[J]. 汽车工程, 2023, 45(10):1815-1823.Cheng T, Hou D C, Zhang Q, et al.Research on multimodal outcome-level fusion framework based on D-S evidence theory[J]. Automotive Engineering, 2023, 45(10): 1815-1823. (in Chinese)
    [7] 郭萌. 基于改进D-S证据理论的财务公司ITO风险控制方法研究[J]. 现代科学仪器, 2023, 40(6): 229-235.Guo M. Research on ITO risk control method of financial company based on improved D-S evidence theory[J]. Modern Scientific Instruments, 2023, 40(6): 229-235. (in Chinese)
    [8] Wang J, Qiao K, Zhang Z. An improvement for combination rule in evidence theory[J]. Future Generation Computer Systems,2019, 91: 1-9.
    [9] Zhang W, Deng Y. Combining conflicting evidence using the DEMATEL method[J]. Soft Computing, 2019, 23: 8207-8216.
    [10] Pichon F, Destercke S, Burger T. A consistency-specificity trade-off to select source behavior in information fusion[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 598-609.
    [11] 陈哲, 王加阳. 基于冲突关系网络的证据合成方法研究[J]. 电子学报, 2021, 49(1): 125-131.Chen Z, Wang J Y. The research on evidence combination method based on conflict relation network[J]. Acta Electronica Sinica, 2021, 49(1): 125-131. (in Chinese)
    [12] 张宏扬, 李士祥, 张浩, 等. 基于D-S证据理论的β因子估算方法[J]. 铁道标准设计, 2023, 67(9): 170-175.Zhang H Y, Li S X, Zhang H, et al. β factor estimation method based on D-S evidence theory[J]. Railway Standard Design,2023, 67(9): 170-175. (in Chinese)
    [13] 倪健, 花延文, 及歆荣. 基于神经网络与改进D-S证据理论的水质评价模型研究[J]. 人民黄河, 2023, 45(1): 99-104.Ni J, Hua Y W, Ji X R. Research on water quality evaluation model based on neural network and improved D-S evidence theory[J]. People’s Yellow River, 2023, 45(1): 99-104. (in Chinese)
    [14] Deng Y. Deng entropy[J]. Chaos, Solitons & Fractals, 2016, 91: 549-553.
    [15] 马晓剑, 张家绪, 王奥, 等. 基于概率转换函数与邓熵的关联分类融合算法[J]. 计算机工程与设计, 2023, 44(5): 1392-1399.Ma X J, Zhang J X, Wang A,et al. Correlation classification fusion algorithm based on probability transfer function and Deng entropy[J]. Computer Engineering and Design, 2023, 44(5): 1392-1399. (in Chinese)
    [16] 孙雷, 吴庆宪, 王玉惠, 等. 基于改进D-S证据理论的多源空战信息博弈融合方法[J]. 信息与控制, 2022, 51(5): 566-572.Sun L, Wu Q X, Wang Y H, et al. Air combat information game fusion method based on improved D-S evidence theory[J].Information and Control, 2022, 51(5): 566-572. (in Chinese)
    [17] 沈金羽, 王玉, 张琳. 融合可信度和不确定度的D-S证据组合方法[J]. 宜宾学院学报, 2023, 23(6): 32-38.Shen J Y, Wang Y, Zhang L. D-S evidence combination method integrating credibility and uncertainty[J]. Journal of Yibin University, 2023, 23(6): 32-38. (in Chinese)
    [18] 江友华, 谭杰, 赵乐, 等. 基于三角散度和信念熵的冲突证据融合算法[J]. 计算机工程与应用, 2023, 59(12): 132-140.Jiang Y H, Tan J, Zhao L,et al. Conflict evidence fusion algorithm based on trigonometric divergence and belief entropy[J]. Computer Engineering and Applications, 2023, 59(12): 132-140. (in Chinese)
    [19] Wang Y, Zhang K, Deng Y. Base belief function: an efficient method of conflict management[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 3427-3437.
    [20] Jing M, Tang Y. A new base basic probability assignment approach for conflict data fusion in the evidence theory[J]. Applied Intelligence, 2021, 51: 1056-1068.
    [21] Zhou Z, Liu T, Hu G, et al. Fault-alarm-threshold optimization method based on interval evidence reasoning[J]. Science China Information Sciences, 2019, 62: 89202.
    [22] 杨永旭. 基于D-S证据和模糊集理论的多源信息融合算法研究[D]. 兰州: 兰州理工大学, 2024.Yang Y X. Research on multi-source information fusion algorithm based on D-S evidence and fuzzy set theory[D]. Lanzhou:Lanzhou University of Technology, 2024. (in Chinese)
    [23] 杨权. 基于模糊神经网络的多源信息融合[D]. 太原: 中北大学, 2017.Yang Q. Multi-source information fusion based on fuzzy neural network[D]. Taiyuan: North University of China, 2017. (in Chinese)
    [24] 黄霄鹏. 分布式多源信息融合算法研究与仿真平台开发[D]. 杭州: 杭州电子科技大学, 2013.Huang X P. Research and development of distributed multi-source information fusion algorithm and simulation platform[D].Hangzhou: Hangzhou Dianzi University, 2013. (in Chinese)
    [25] 商旭升, 何宇峰. 基于多源离散数据的复杂系统可靠性评定方法[J]. 测控技术, 2021, 40(2): 13-17.Shang X S, He Y F. Reliability assessment method for complex system based on multi-source discrete data[J]. Measurement and Control Technology, 2021, 40(2): 13-17. (in Chinese)
    [26] 张庆涛, 张涵, 李重阳, 等. 基于改进D-S证据理论的信息系统风险评估的研究[J]. 信息安全研究, 2022, 8(9): 925-930.Zhang Q T, Zhang H, Li C Y, et al. Research on information system risk assessment based on improved d-s evidence theory[J]. Information Security Research, 2022, 8(9): 925-930. (in Chinese)
    [27] Weng J L, Xiao F Y, Cao Z H.Uncertainty modelling in multi-agent information fusion systems[J]. International Foundation for Autonomous Agents and Multiagent Systems, 2020, 9: 1494-1502.
    [28] Murphy, Catherine K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29: 1-9.
    [29] Yuan K, Deng Y. Conflict evidence management in fault diagnosis[J].International Journal of Machine Learning and Cybernetics, 2019, 10: 121-130.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王娜,刘静渝,李皓然,夏晓峰.基于D-S证据理论的多智能体系统冲突数据融合机制研究[J].重庆大学学报,2025,48(2):22-34.

复制
分享
文章指标
  • 点击次数:103
  • 下载次数: 27
  • HTML阅读次数: 18
  • 引用次数: 0
历史
  • 收稿日期:2024-04-12
  • 在线发布日期: 2025-03-04
文章二维码