融合EEMDBiLSTM深度网络的结构监测缺失数据重构
作者:
作者单位:

1.重庆人文科技学院,计算机工程学院,重庆 401524;2.重庆人文科技学院,大数据与网络信息安全工程技术研究中心,重庆 401524;3.重庆大学 土木工程学院,重庆 400045

作者简介:

何盈盈(1994—),女,硕士,主要从事大数据分析与挖掘、结构健康监测、人工智能方向研究,(E-mail)heyingyg@163.com。

通讯作者:

张利凯(1993—),男,(E-mail)zhanglikai@cqu.edu.cn。

基金项目:

重庆市教委科学技术研究项目(KJQN202201805,KJQN202301801);重庆市合川区科技计划项目(HCKJ-2024-110);重庆人文科技学院科学技术研究项目(CRKZK2023007,JSJGC202201,JSJGC202205)。


Reconstructing missing health monitoring data using a deep network integrating EEMD and BiLSTM
Author:
Affiliation:

1.a. School of Computer Engineering; 1b. Big Data and Network Information Security Engineering Technology Research Center, Chongqing College of Huamnitics Science & Technology, Chongqing 401524, P. R. China; 2. College of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China

Fund Project:

Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202201805, KJQN202301801), Science and Technology Program of Hechuan District of Chongqing(HCKJ-2024-110), and Science and Technology Research Program of Chongqing College of Humanities Science & Technology (CRKZK2023007, JSJGC202201, JSJGC202205).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在长期监测过程中,由于传感器设备故障、供能中断、网络传输问题等诸多因素,导致结构健康监测系统采集的数据存在不完整性。针对这一问题,结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)与双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)在时序处理方面的优势,提出一种基于EEMD-BiLSTM的结构监测缺失数据重构方法。该方法利用EEMD自适应分解监测时序数据为1组代表不同时间尺度的本征模态分量(intrinsic mode function,IMF),使非线性、非平稳序的时序信号平稳化。然后,将IMF分量输入到BiLSTM网络中进行缺失数据重构,提高BiLSTM预测精度。针对6层框架结构缩尺模型和Benchmark有限元仿真模型进行分析,试验结果表明,相比EEMD-LSTM、BiLSTM、LSTM主流方法,提出的EEMD-BiLSTM具有最高预测精度,在5%、10%、15%缺失数据情况下,其R2指标保持在0.8以上。因此,采用EEMD方法对非稳态结构加速响应数据进行预处理,可有效提高BiLSTM的预测精度,对于结构监测缺失数据问题,提供更具适应性的方法。

    Abstract:

    In long-term monitoring processes, the structural health monitoring(SHM) system often encounters data incompleteness due to various factors, including sensor malfunctions, power interruptions, and network transmission issues. To address this challenge, this study proposes a missing data reconstruction method for structural monitoring based on ensemble empirical mode decomposition(EEMD) and bidirectional long short-term memory(BiLSTM) networks, leveraging their advantages in time-series processing. The proposed approach utilizes EEMD to adaptively decompose the monitoring time-series data into a set of intrinsic mode functions (IMFs), each representing different time scales. This decomposition effectively transforms the nonlinear and non-stationary time-series signals into stationary components. The IMFs are then input into a BiLSTM network for missing data reconstruction, enhancing the prediction accuracy of the BiLSTM model. Analysis is conducted on a six-story scaled structural model and a benchmark finite element simulation model. Experimental results demonstrate that, compared to the mainstream methods such as EEMD-LSTM, BiLSTM, and LSTM, the proposed EEMD-BiLSTM approach achieves the highest prediction accuracy. In cases of 5%, 10% and 15% missing data, the R2 value remains above 0.8. Therefore, the use of the EEMD method for preprocessing non-stationary structural acceleration response data significantly improves the prediction accuracy of BiLSTM, providing a more adaptive solution to the problem of missing data in structural monitoring.

    参考文献
    [1] Bao Y Q, Li H. Machine learning paradigm for structural health monitoring[J]. Structural Health Monitoring, 2021, 20(4): 1353-1372.
    [2] Chen Z C, Bao Y Q, Li H, et al. A novel distribution regression approach for data loss compensation in structural health monitoring[J]. Structural Health Monitoring, 2018, 17(6): 1473-1490.
    [3] Ou J P, Li H. Structural health monitoring in China: review and future trends[J]. Structural Health Monitoring, 2010, 9(3): 219-231.
    [4] Wan H P, Ni Y Q. Bayesian multi-task learning methodology for reconstruction of structural health monitoring data[J]. Structural Health Monitoring, 2019, 18(4): 1282-1309.
    [5] Li Y T, Bao T F, Chen Z X, et al. A missing sensor measurement data reconstruction framework powered by multi-task Gaussian process regression for dam structural health monitoring systems[J]. Measurement, 2021, 186: 110085.
    [6] Chen Z C, Li H, Bao Y Q. Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach[J]. Structural Health Monitoring, 2019, 18(4): 1168-1188.
    [7] Zhang Z Y, Luo Y Z. Restoring method for missing data of spatial structural stress monitoring based on correlation[J]. Mechanical Systems and Signal Processing, 2017, 91: 266-277.
    [8] Rosafalco L, Manzoni A, Mariani S, et al. Fully convolutional networks for structural health monitoring through multivariate time series classification[J]. Advanced Modeling and Simulation in Engineering Sciences, 2020, 7(1): 38.
    [9] Hua Y X, Zhao Z F, Li R P, et al. Deep learning with long short-term memory for time series prediction[J].IEEE Communications Magazine, 2019, 57(6): 114-119.
    [10] Peng T, Zhang C, Zhou J Z, et al. An integrated framework of bi-directional long-short term memory(BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221: 119887.
    [11] Li X, Zhuang W, Zhang H. Short-term power load forecasting based on gate recurrent unit network and cloud computing platform[C]//4th International Conference on Computer Science and Application Engineering. Sanya China: ACM, 2020: 1-6.
    [12] Deng Y, Jia H, Li P, et al. A deep learning methodology based on bidirectional gated recurrent unit for wind power prediction[C]//14th IEEE Conference on Industrial Electronics and Applications (ICIEA). Xi’an, China: IEEE, 2019: 591-595.
    [13] Fan G, Li J, Hao H. Lost data recovery for structural health monitoring based on convolutional neural networks[J]. Structural Control and Health Monitoring, 2019, 26(10): e2433.
    [14] Liu H, Ding Y L, Zhao H W, et al. Deep learning-based recovery method for missing structural temperature data using LSTM network[J]. Structural Monitoring and Maintenance, 2020, 7(2): 109-124.
    [15] Oh B K, Glisic B, Kim Y, et al. Convolutional neural network-based data recovery method for structural health monitoring[J]. Structural Health Monitoring, 2020, 19(6): 1821-1838.
    [16] Du B W, Wu L Y, Sun L L, et al. Heterogeneous structural responses recovery based on multi-modal deep learning[J]. Structural Health Monitoring, 2023, 22(2): 799-813.
    [17] Lei X M, Sun L M, Xia Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks[J]. Structural Health Monitoring, 2021, 20(4): 2069-2087.
    [18] Li L C, Zhou H J, Liu H L, et al. A hybrid method coupling empirical mode decomposition and a long short-term memory network to predict missing measured signal data of SHM systems[J]. Structural Health Monitoring, 2021, 20(4): 1778-1793.
    [19] Flandrin P, Gon?alvès P, Rilling G. EMD equivalent filter banks, from interpretation to applications[M]//Interdisciplinary Mathematical Sciences: 5. Singapore: World Scientific, 2005: 57-74.
    [20] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
    [21] Yang K, Ding Y L, Geng F F, et al. A multi-sensor mapping Bi-LSTM model of bridge monitoring data based on spatial-temporal attention mechanism[J]. Measurement, 2023, 217: 113053.
    [22] Anjneya K, Roy K. Acceleration time history data for experimental shear building model (Kumar Anjneya & Koushik Roy)[EB/OL]. (2021-01-04)[2023-08-23]. https://data.mendeley.com/datasets/snmz587nvb/2.
    [23] Saidin S S, Kudus S A, Jamadin A, et al. Vibration-based approach for structural health monitoring of ultra-high-performance concrete bridge[J]. Case Studies in Construction Materials, 2023, 18: e01752.
    [24] Kurian B, Liyanapathirana R. Machine learning techniques for structural health monitoring[M]//13th International Conference on Damage Assessment of Structures. Singapore: Springer Singapore, 2020: 3-24.
    [25] Nasrollahi A, Deng W, Ma Z Y, et al. Multimodal structural health monitoring based on active and passive sensing[J]. Structural Health Monitoring, 2018, 17(2): 395-409.
    [26] Bao Y Q, Beck J L, Li H. Compressive sampling for accelerometer signals in structural health monitoring[J]. Structural Health Monitoring, 2011, 10(3): 235-246.
    [27] He Y Y, Zhang L K, Chen Z S, et al. A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network[J]. Engineering with Computers, 2023, 39(3): 1771-1789.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何盈盈,黄正洪,张利凯,赵智航,关腾达.融合EEMDBiLSTM深度网络的结构监测缺失数据重构[J].重庆大学学报,2025,48(2):35-49.

复制
分享
文章指标
  • 点击次数:75
  • 下载次数: 32
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2023-08-12
  • 在线发布日期: 2025-03-04
文章二维码