Q960高强钢锥形削弱梁柱节点滞回性能及恢复力模型
作者:
作者单位:

1.重庆大学 土木工程学院,重庆 400045;2.福建省水利水电勘测设计研究院有限公司,福州 350000;3.华润置地有限公司,成都 610066;4.河钢材料技术研究院用户技术中心, 石家庄 050000

作者简介:

聂诗东(1974—),男,博士,副教授,主要从事钢结构研究,(E-mail) nieshidong@cqu.edu.cn。

中图分类号:

TU391

基金项目:

高性能建筑结构钢设计应用基础研究(H20200688);高等学校学科创新引智计划项目(B18062)。


Hysteretic behavior and restoring force model of Q960 high strength steel weakened beam-column joints
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;2.Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower Co., Ltd., Fuzhou 350000, P. R. China;3.China Resources Land Limited, Chengdu 610066, P. R. China;4.User Technology Department, Materials Technology Research Institute of HBIS, Shijiazhuang 050000, P. R. China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [9]
  • | | |
  • 文章评论
    摘要:

    为研究某新型高性能抗震结构钢的抗震性能,对3种不同连接构造的高强钢梁柱节点开展拟静力作用下的滞回试验。结果表明,“锥形削弱”节点的延性发挥较为充分且耗能能力较高,“复合型”连接构造可有效提升节点的抗震性能。以试验数据为基础,建立了考虑刚度退化的三线性恢复力模型,采用试验特征点拟合骨架曲线,并用指数函数微分方程求解滞回曲线表达式。结果表明,所建模型的重构解析误差控制在10%以内,可有效表征节点的滞回响应。

    Abstract:

    To study the hysteretic behavior of a new kind of high-performance steel produced by HBIS(Hebei-Iron-and-Steel), three beam-column joints with different connection forms were designed and tested under quasi-static loading conditions. The experimental results show that the “taper weakened” joint exhibits fully developed ductility and excellent energy dissipation capacity, while the “composite” joint shows significantly improved seismic performance. Based on the test results, a trilinear restoring force model considering stiffness degradation was established, with the skeleton curve fitted to key experimental feature points.The hysteretic curve expression was derived using an exponential differential equation. The reconstructed model achieved an analytic error within 10%, effectively capturing the hysteretic response of the jonts.

    参考文献
    [1] J R, H G. Use and application of high-performance steels for steel structures[J]. Zürich, Switzerland: IABSE-AIPC-IVBH, 2005.
    [2] Bjorhovde R. Development and use of high performance steel[J]. Journal of Constructional Steel Research, 2004, 60(3/4/5): 393-400.
    [3] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图: GB 18306—2015[S]. 北京: 中国标准出版社, 2016.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Seismic ground motion parameters zonation map of China: GB 18306—2015[S]. Beijing: Standards Press of China, 2016. (in Chinese)
    [4] 刘希月, 王元清, 石永久, 等. 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39(2): 28-36.Liu X Y, Wang Y Q, Shi Y J, et al. Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39(2): 28-36. (in Chinese)
    [5] 郭宏超, 周熙哲, 李炎隆, 等. Q690高强钢板式加强型节点抗震性能研究[J]. 建筑结构学报, 2021, 42(6): 128-138.Guo H C, Zhou X Z, Li Y L, et al. Study on seismic behavior of Q690 high strength steel plate reinforced joints[J]. Journal of Building Structures, 2021, 42(6): 128-138. (in Chinese)
    [6] Gir?o Coelho A M, Bijlaard F S K, Kolstein H. Experimental behaviour of high-strength steel web shear panels[J]. Engineering Structures, 2009, 31(7): 1543-1555.
    [7] Chen X S, Shi G. Cyclic tests on high strength steel flange-plate beam-to-column joints[J]. Engineering Structures, 2019, 186: 564-581.
    [8] Chen X S, Shi G. Experimental study on seismic behaviour of cover-plate joints in high strength steel frames[J]. Engineering Structures, 2019, 191: 292-310.
    [9] 陈学森. 高强度钢材板式加强型梁柱节点抗震性能及设计方法[D]. 北京: 清华大学, 2018.Chen X S. Seismic performance and design method of high strength steel plate reinforced beam-column joints[D]. Beijing: Tsinghua University, 2018. (in Chinese)
    [10] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分:室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials - Tensile testing - Part 1: Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2011. (in Chinese)
    [11] 中华人民共和国住房和城乡建设部. 高层民用建筑钢结构技术规程: JGJ 99—2015[S]. 北京: 中国建筑工业出版社, 2016.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for steel structure of tall building: JGJ 99—2015[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [12] American Institute of Steel Construction. Seismic provisions for structural steel buildings[S]. 2010.
    [13] Chang H Y, Kawakami H. Effects of ground motion parameters and cyclic degradation behavior on collapse response of steel moment-resisting frames[J]. Journal of Structural Engineering, 2006, 132(10): 1553-1562.
    [14] ECCS. Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads[S]. 1986.
    [15] 郭子雄, 周素琴. RC框架节点的弯矩-滑移转角恢复力模型[J]. 地震工程与工程振动, 2003, 23(3): 118-124.Guo Z X, Zhou S Q. A hysteretic model for simulating moment-anchorage slip-rotation relationship of RC frame structure[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(3): 118-124. (in Chinese)
    [16] 石永久, 苏迪, 王元清. 考虑组合效应的钢框架梁柱节点恢复力模型研究[J]. 世界地震工程, 2008, 24(2): 15-20.Shi Y J, Su D, Wang Y Q. Study on restoring force models of steel beam-column connections with composite action[J]. World Earthquake Engineering, 2008, 24(2): 15-20. (in Chinese)
    引证文献
引用本文

聂诗东,龙泓州,叶曦雨,邓颜智,陈振业,马成,潘进.Q960高强钢锥形削弱梁柱节点滞回性能及恢复力模型[J].重庆大学学报,2025,48(3):81-93.

复制
相关视频

分享
文章指标
  • 点击次数:60
  • 下载次数: 301
  • HTML阅读次数: 25
  • 引用次数: 0
历史
  • 收稿日期:2024-05-17
  • 在线发布日期: 2025-04-15
文章二维码