Ti60合金疲劳蠕变交互作用下蠕变应力门槛值预测
作者:
作者单位:

重庆大学 航空航天学院,重庆 400044

作者简介:

赵翰博(1997—),男,硕士研究生,主要从事钛合金疲劳-蠕变性能方向的研究,(E-mail)hanbo970115@163.com。

通讯作者:

刘浩(1980—),男,博士,高级实验师,(E-mail)liuhaocqu@cqu.edu.cn。

中图分类号:

V252


Prediction of threshold value of creep stress in Ti60 alloy under fatigue-creep interaction
Author:
Affiliation:

College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在550 ℃高温环境下,对Ti60合金试件开展疲劳-蠕变交互试验,在疲劳应力σmax=450 MPa、应力比R=0.1的试验条件下,研究不同蠕变应力对钛合金疲劳蠕变行为的影响。根据试验数据,基于Norton模型提出一种能在样本有限的情况下,仅通过短时间的试验来预测较长时间的蠕变应力门槛值的预测模型。将该模型预测结果与最大轴向应力法计算结果进行对比,并将两者预测结果均与升降法所得试验结果进行了对比,相对误差均在2%以内,表明该预测模型能较为准确地预测疲劳蠕变试验条件下蠕变应力门槛值。

    Abstract:

    Fatigue-creep interaction tests were conducted on Ti60 alloy specimens at 550 ℃. Under test conditions of maximum fatigue stress σmax=450 MPa and stress ratio R=0.1, the influence of different creep stresses on the fatigue-creep behavior of the alloy was investigated. Based on the test data and the Norton model, a novel method was proposed to improve the understanding of fatigue-creep behavior with a limited number of samples. This approach establishes a prediction model capable of estimating the threshold value of creep stress over extended periods through short-term experimental data. The model’s predictions were compared with results from the maximum axial stress method and the step-loading method, yielding a relative error of less than 2%. The results show that the proposed prediction model can accurately determine the creep stress threshold under fatigue-creep interaction conditions.

    参考文献
    [1] 李欣, 赵军, 刘时兵, 等. 航空用高温钛合金的研究进展[C]// 2020中国铸造活动周论文集. 合肥: 中国机械工程学会铸造分会, 铸造行业生产力促进中心, 2020: 109-113.Li X, Zhao J, Liu S B, et al. Research progress of high temperature titanium alloys for aviation[C]// 2020 China Foundry Congress. Hefei: Foundry Institution of Chinese Mechanical Engineering Society, Foundry Productivity Promotion Center, 2020: 109-113. (in Chinese)
    [2] 何春艳, 张利军. 国内外高温钛合金的发展与应用[J]. 世界有色金属, 2016(1): 21-25.He C Y, Zhang L J. The development and application of high temperature titanium alloy at domestic and abroad[J]. World Nonferrous Metals, 2016(1): 21-25. (in Chinese)
    [3] 张鸿渐. 高温钛合金的发展与应用[J]. 技术与市场, 2015, 22(12): 208.Zhang H J. Development and application of high temperature titanium alloy[J]. Technology and Market, 2015, 22(12): 208. (in Chinese)
    [4] 涂善东. 高温结构完整性原理[M]. 北京: 科学出版社, 2003.Tu S D. High temperature structural integrity[M]. Beijing: Science Press, 2003. (in Chinese)
    [5] 张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007.Zhang J S. Deformation and fracture of materials at high temperature[M]. Beijing: Science Press, 2007. (in Chinese)
    [6] Viswanathan R, Stringer J. Failure mechanisms of high temperature components in power plants[J]. Journal of Engineering Materials and Technology, 2000, 122(3): 246-255.
    [7] 龚伟忠. 316H不锈钢缺口蠕变-疲劳行为及其寿命预测方法研究[D]. 上海: 华东理工大学, 2022.Gong W Z. Research on notch creep-fatigue behavior and life prediction method of 316H stainless steel[D]. Shanghai: East China University of Science and Technology, 2022. (in Chinese)
    [8] 王润梓, 廖鼎, 张显程, 等. 高温结构蠕变疲劳寿命设计方法: 从材料到结构[J]. 机械工程学报, 2021, 57(16): 66-86, 105.Wang R Z, Liao D, Zhang X C, et al. Creep-fatigue life design methods in high-temperature structures: from materials to components[J]. Journal of Mechanical Engineering, 2021, 57(16): 66-86, 105. (in Chinese)
    [9] 王润梓. 基于能量密度耗散准则的蠕变-疲劳寿命预测模型及应用[D]. 上海: 华东理工大学, 2019.Wang R Z. A creep-fatigue life prediction model based on strain energy density exhaustion criterion and its application on aero-engine turbine discs[D]. Shanghai: East China University of Science and Technology, 2019. (in Chinese)
    [10] Zhang S D, Takahashi Y. Creep-fatigue life and damage evaluation under various strain waveforms for Ni-based Alloy 740H[J]. International Journal of Fatigue, 2023, 176: 107833.
    [11] Takazawa S, Kang J, Abe M, et al. Demonstration of single-frame coherent X-ray diffraction imaging using triangular aperture: towards dynamic nanoimaging of extended objects[J]. Optics Express, 2021, 29(10): 14394.
    [12] Takahashi Y. Modelling of rupture ductility of metallic materials for wide ranges of temperatures and loading conditions, part I: development of basic model[J]. Materials at High Temperatures, 2020, 37(6): 357-369.
    [13] Takahashi Y. Modelling of rupture ductility of metallic materials over wide ranges of temperatures and loading conditions, part II: comparison with strain energy-based approach[J]. Materials at High Temperatures, 2020, 37(5): 340-350.
    [14] 王家璇, 李梦阳, 郑泽邦. 蠕变-疲劳交互作用下P91钢变形行为的研究进展[J]. 热加工工艺, 2024, 53(9): 1-7.Wang J X, Li M Y, Zheng Z B. Advances in deformation behaviour of P91 steel under creep-fatigue interaction[J]. Hot Working Technology, 2024, 53(9): 1-7. (in Chinese)
    [15] Saad A A, Bachok Z, Sun W. A study on the damage evolution of P91 steel under cyclic loading at high temperature[J]. International Journal of Automotive and Mechanical Engineering, 2016, 13(3): 3564-3573.
    [16] Cristalli C, Agostini P, Bernardi D, et al. Low cycle fatigue, creep-fatigue and relaxation-fatigue tests on P91[J]. Journal of Physical Science and Application, 2017, 7(2): 18-26.
    [17] 魏峰. P91钢蠕变-疲劳交互作用损伤模型研究及寿命评估[D]. 成都: 西南交通大学, 2009.Wei F. Research on creep-fatigue interation damage model and life assessments of P91 steel[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
    [18] 郝玉龙. P91钢蠕变特性及蠕变疲劳交互作用研究[D]. 成都: 西南交通大学, 2005.Hao Y L. Study on creep and creep-fatigue interaction of P91 steel[D]. Chengdu: Southwest Jiaotong University, 2005. (in Chinese)
    [19] 刘洪杰. 电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J]. 动力工程, 2007, 27(6): 990-995.Liu H J. Experimental study on creep-fatigue interaction behavior of steel P91 for power plant boilers[J]. Journal of Power Engineering, 2007, 27(6): 990-995. (in Chinese)
    [20] Xu L, Zhao L, Gao Z, et al. A novel creep-fatigue interaction damage model with the stress effect to simulate the creep-fatigue crack growth behavior[J]. International Journal of Mechanical Sciences, 2017,130:143-153.
    [21] Narasimhachary S B, Saxena A. Results of the ASTM round robin on creep-fatigue crack growth testing of a P91 steel[J]. Materials Performance and Characterization, 2019, 8(1): 20190125.
    [22] Zhang M, Zhang Y X, Liu H, et al. Judgment criterion of the dominant factor of creep-fatigue crack growth in a nickel-based superalloy at elevated temperature[J]. International Journal of Fatigue, 2019, 118: 176-184.
    [23] Liu H, Bao R, Fei B J. Determination of creep crack growth threshold by experiments under elevated temperature with pre-stressed specimens[J]. Advanced Materials Research, 2014, 891/892: 371-376.
    [24] Liu H, Bao R, Lei W M, et al. Evaluating the critical temperature of creep-fatigue interaction a nickel-based powder metallurgy superalloy[J]. Key Engineering Materials, 2013, 577/578: 625-628.
    [25] 李舜酩. 机械疲劳与可靠性设计[M]. 北京: 科学出版社, 2006.Li S M. Mechanical fatigue and reliability design[M]. Beijing: Science Press, 2006. (in Chinese)
    [26] 国家市场监督管理总局, 国家标准化管理委员会. 金属材料 蠕变-疲劳试验方法: GB/T 38822—2020[S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation, National Standardizaton Administration. Metallic materials: creep fatigue test method: GB/T 38822—2020[S]. Beijing: Standards Press of China, 2020. (in Chinese)
    [27] Liu Z, Gong J G, Zhao P, et al. Creep-fatigue interaction and damage behavior in 9-12%Cr steel under stress-controlled cycling at elevated temperature: effects of holding time and loading rate[J]. International Journal of Fatigue, 2022, 156: 106684.
    [28] Takahashi Y. Study on creep-fatigue evaluation procedures for high chromium steels: part II: sensitivity to calculated deformation[J]. International Journal of Pressure Vessels and Piping, 2008, 85(6): 423-440.
    [29] Dong C L, Yu H C, Jiao Z H, et al. Low cycle fatigue, creep and creep-fatigue interaction behavior of a TiAl alloy at high temperatures[J]. Scripta Materialia, 2018, 144: 60-63.
    [30] 陈凌, 张贤明, 欧阳平. 一种疲劳-蠕变交互作用寿命预测模型及试验验证[J]. 中国机械工程, 2015, 26(10): 1356-1361.Chen L, Zhang X M, Ouyang P. A model of life prediction for fatigue-creep interaction and its experimental verification[J]. China Mechanical Engineering, 2015, 26(10): 1356-1361. (in Chinese)
    [31] 陈学东, 范志超, 江慧丰, 等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报, 2009, 45(2): 81-87.Chen X D, Fan Z C, Jiang H F, et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions[J]. Chinese Journal of Mechanical Engineering, 2009, 45(2): 81-87. (in Chinese)
    [32] 姜礼益, 宋世杰, 阚前华. T91钢高温蠕变实验和耦合损伤模型研究[J]. 四川轻化工大学学报(自然科学版), 2023, 36(1): 1-10.Jiang L Y, Song S J, Kan Q H. Study on creep experiment and damage-coupled constitutive model of T91 steel at elevated temperature[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2023, 36(1): 1-10. (in Chinese)
    [33] 中国航发北京航空材料研究院, 郭广平, 丁传富. 航空材料力学性能检测[M]. 北京: 机械工业出版社, 2018.AECC Beijing Institute of Aeronautical Materials, Guo G P, Ding C F. Mechanical testing of Aeronautical Materials[M]. Beijing: China Machine Press, 2018. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵翰博,张建宇,刘浩,龚愉.Ti60合金疲劳蠕变交互作用下蠕变应力门槛值预测[J].重庆大学学报,2025,48(4):29-39.

复制
分享
文章指标
  • 点击次数:95
  • 下载次数: 121
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2023-12-09
  • 在线发布日期: 2025-04-25
文章二维码