基于WENO格式有限体积法的铁磁流体两相流相场方法
作者:
作者单位:

1.重庆大学 航空航天学院,重庆 400044;2.沪渝人工智能研究院,重庆 401332

作者简介:

张少松(1997—)男,硕士研究生,主要从事复杂多相流体流动问题方向的研究,(E-mail)895305646@qq.com。

通讯作者:

张良奇,男,研究员,博士生导师,(E-mail)zhangliangqi@cqu.edu.cn。

中图分类号:

O359+.1

基金项目:

国家自然科学基金资助项目(12102071,12172070);重庆市博士直通车资助项目(CSTB2022BSXM-JCX0086)。


A finite volume-based phase field method for two-phase ferrofluid flows
Author:
Affiliation:

1.College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China;2.Shanghai-Chongqing Institute of Artificial Intelligence, Chongqing 401332, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (12102071, 12172070), and Chongqing Doctoral Through Train Program (CSTB2022BSXM-JCX0086).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用基于WENO格式的有限体积法,发展了包括铁磁流体的两相流相场方法。采用不可压缩Navier-Stokes方程描述流体流动,利用Cahn-Hilliard方程捕捉两相流界面运动,并采用Maxwell方程描述磁场分布。同时,在流体流动控制方程中加入开尔文力和表面张力以实现磁场对界面动力学行为的描述。将四阶Cahn-Hilliard方程拆分为2个Helmholtz类型方程,从而克服四阶非线性项的离散和高精度计算带来的难题。采用五阶WENO格式对控制方程的对流项进行统一离散处理,从而提高数值计算的精度性,同时避免产生数值振荡。Zalesak’s圆盘问题数值模拟的结果表明,本文方法的相界面捕捉精度高于参考文献中所报道的离散方法,与高精度相场方法的精度相当;对剪切流中的液滴变形问题的数值模拟揭示本文数值方法可以更真实地捕捉到更多个卫星液滴。此外,针对磁场影响下,较低毛细数条件的铁磁流体液滴剪切变形研究显示,当外加磁场方向与液滴水动力学变形方向一致时,磁场的作用会放大液滴变形,进一步增加磁场强度会诱发液滴分裂;而当外加磁场方向与液滴水动力学变形方向垂直时,较低强度的磁场作用能够改变液滴变形方向,而较高强度的磁场则会使液滴直接呈现出沿磁场方向变形。

    Abstract:

    This paper presents a finite volume method based on the weighted essentially non-oscillatory(WENO) scheme to develop a phase field method for simulating two-phase ferrofluid flows. The incompressible Navier-Stokes equations is used to describe fluide flow, the Cahn-Hilliard equation is adopted to capture interfacial motion of two-phase flow, and the Maxwell equation is used to describe external magnetic field distribution. At the same time, adding Kelvin force and surface tension to the fluid flow control equation to achieve the description of interface dynamic behavior by magnetic field. To address the challenges posed by the fourth-order nonlinear diffusion terms, the Cahn-Hilliard equation is decomposed into two Helmholtz equations. The fifth-order WENO scheme is employed to handle the convection term, enhancing computational accuracy and mitigating numerical oscillations. Validation through Zalesak’s disk problem shows that the proposed method achieves higher phase interface capture accuracy compared to existing references, while maintaining performance comparable to high-precision phase field methods. The method is applied to investigate droplet shear deformation, revealing its capability to capture more satellite droplets. Moreover,research on the shear deformation of ferromagnetic fluid droplets under the influence of magnetic fields and with lower capillary numbers indicates that the magnetic interfacial force favors droplet deformation when the external magnetic field direction aligns with the hydrodynamic deformation. Furthermore, increasing the magnetic field intensity leads to droplet splitting. Conversely, when the magnetic field is nearly perpendicular to the deformation direction, a low-intensity field alters the deformation trajectory, while a high intensity magnetic field enforces deformation along the magnetic field direction.

    参考文献
    [1] Zhang S T, Niu X D, Li Q P, et al. A numerical investigation on the deformation of ferrofluid droplets[J]. Physics of Fluids, 2023, 35(1): 012102.
    [2] Khan A, Niu X D, Li Y, et al. Motion, deformation, and coalescence of ferrofluid droplets subjected to a uniform magnetic field[J]. International Journal for Numerical Methods in Fluids, 2020, 92(11): 1584-1603.
    [3] Wu Z G, Troll J, Jeong H H, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye[J]. Science Advances, 2018, 4(11): eaat4388.
    [4] Fan X J, Sun M M, Sun L N, et al. Ferrofluid droplets as liquid microrobots with multiple deformabilities[J]. Advanced Functional Materials, 2020, 30(24): 2000138.
    [5] Medina-Sánchez M, Magdanz V, Guix M, et al. Swimming microrobots: soft, reconfigurable, and smart[J]. Advanced Functional Materials, 2018, 28(25): 1707228.
    [6] Sun M M, Hao B, Yang S H, et al. Exploiting ferrofluidic wetting for miniature soft machines[J]. Nature Communications, 2022, 13: 7919.
    [7] Gao D H, Morley N B, Dhir V. Understanding magnetic field gradient effect from a liquid metal droplet movement[J]. Journal of Fluids Engineering, 2004, 126(1): 120-124.
    [8] Korlie M S, Mukherjee A, Nita B G, et al. Modeling bubbles and droplets in magnetic fluids[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2008, 20(20): 204143.
    [9] Cunha Lucas H P, Siqueira Ivan R, Oliveira Taygoara F, et al. Field-induced control of ferrofluid emulsion rheology and droplet break-up in shear flows[J]. Physics of Fluids, 2018, 30(12): 122110.
    [10] Nochetto R H, Salgado A J, Tomas I. A diffuse interface model for two-phase ferrofluid flows[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 309: 497-531.
    [11] Hu Y, Li D C, Niu X D. Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows[J]. Physical Review E, 2018, 98(3): 033301.
    [12] Khan A, Niu X D, Li Q Z, et al. Dynamic study of ferrodroplet and bubbles merging in ferrofluid by a simplified multiphase lattice Boltzmann method[J]. Journal of Magnetism and Magnetic Materials, 2020, 495: 165869.
    [13] Tang T, Qiao Z H. Efficient numerical methods for phase-field equations[J]. Scientia Sinica Mathematica, 2020, 50(6): 775.
    [14] Yue P T, Feng J J, Liu C, et al. A diffuse-interface method for simulating two-phase flows of complex fluids[J]. Journal of Fluid Mechanics, 2004, 515: 293-317.
    [15] Dong S, Shen J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J]. Journal of Computational Physics, 2012, 231(17): 5788-5804.
    [16] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
    [17] Huang Z Y, Lin G, Ardekani A M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J]. Journal of Computational Physics, 2020, 406: 109192.
    [18] Guermond J L, Minev P, Shen J. An overview of projection methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/45/46/47): 6011-6045.
    [19] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA Journal, 1983, 21(11): 1525-1532.
    [20] Huang Z Y, Lin G, Ardekani A M. A mixed upwind/central WENO scheme for incompressible two-phase flows[J]. Journal of Computational Physics, 2019, 387(C): 455-480.
    [21] Kim J. A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(37/38/39/40): 3105-3112.
    [22] Liu H H, Valocchi A J, Zhang Y H, et al. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel[J]. Journal of Computational Physics, 2014, 256(C): 334-356.
    [23] Wang H L, Chai Z H, Shi B C, et al. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations[J]. Physical Review E, 2016, 94(3): 033304.
    [24] Liang H, Shi B C, Guo Z L, et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(5): 053320.
    [25] Xiao Y, Zeng Z, Zhang L Q, et al. A highly accurate bound-preserving phase field method for incompressible two-phase flows[J]. Physics of Fluids, 2022, 34(9): 092103.
    [26] Taylor G I. The viscosity of a fluid containing small drops of another fluid[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1932, 138(834): 41-48.
    [27] Guido S, Villone M. Three-dimensional shape of a drop under simple shear flow[J]. Journal of Rheology, 1998, 42(2): 395-415.
    [28] Kennedy M R, Pozrikidis C, Skalak R. Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow[J]. Computers & Fluids, 1994, 23(2): 251-278.
    [29] Cox R G. The deformation of a drop in a general time-dependent fluid flow[J]. Journal of Fluid Mechanics, 1969, 37(3): 601-623.
    [30] Hassan M R, Wang C. Magnetic field induced ferrofluid droplet breakup in a simple shear flow at a low Reynolds number[J]. Physics of Fluids, 2019, 31(12): 127104.
    [31] Hu Y, Li D C, Jin L C, et al. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: the reduction of numerical dispersion[J]. Physical Review E, 2019, 99(2): 023302.
    [32] Li Q Z, Lu Z L, Chen Z, et al. An efficient simplified phase-field lattice Boltzmann method for super-large-density-ratio multiphase flow[J]. International Journal of Multiphase Flow, 2023, 160: 104368.
    [33] Flament C, Lacis S, Bacri J C, et al. Measurements of ferrofluid surface tension in confined geometry[J]. Physical Review E, 1996, 53(5): 4801-4806.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张少松,张良奇,陈黎明,王小双,肖姚,曾忠.基于WENO格式有限体积法的铁磁流体两相流相场方法[J].重庆大学学报,2025,48(4):67-83.

复制
分享
文章指标
  • 点击次数:116
  • 下载次数: 127
  • HTML阅读次数: 38
  • 引用次数: 0
历史
  • 收稿日期:2024-01-31
  • 在线发布日期: 2025-04-25
文章二维码