基于方位信息的轮式机器人动态编队控制
作者:
作者单位:

1.陕西科技大学,电气与控制工程学院,西安710021;2.陕西科技大学,机电工程学院,西安710021

作者简介:

李 艳(1972—),女,教授,主要从事工业自动化、机器人轨迹跟踪、多机编队等方向研究。

通讯作者:

贺彬彬(1999—),女,(Email)1798759270@qq.com。

中图分类号:

TP242

基金项目:

陕西省重点研发计划项目(2023-YBGY-277,2023-YBGY-409)。


Dynamic formation control of wheeled robots based on azimuth information
Author:
Affiliation:

1.School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China;2.School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China

Fund Project:

Supported by Key Research and Development Program of Shaanxi Province(2023-YBGY-277,2023-YBGY-409).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对非完整约束的多机器人动态编队中,各机器人只能获取相邻机器人方位信息的情况,提出一种纯方位角信息的分布式PID(proportion integration derivative)编队控制算法。考虑领航机器人易受风向或路面平整度等扰动影响,带来无法保持编队队形的问题,算法通过引入跟随机器人的相对位置和相对速度反馈,有效消除稳态误差,抑制干扰的影响,改善系统的动态性能,保证系统的全局稳定性。然后,利用Routh-Hurwitz稳定性判据进行分析,验证编队系统的全局稳定性。最后,通过仿真实验比较所提控制律与基于纯比例和比例积分的控制律在收敛速度、抗干扰能力等方面的性能。仿真结果表明:所提控制律使领航者受到干扰后依然形成期望编队,实现对领航者轨迹的快速跟踪,总方位角误差的相对最大偏差下降了5.4%。

    Abstract:

    Addressing the scenario in which each robot can only acquire the azimuth information of adjacent robots in dynamic formations with incomplete constraints, this paper proposes a distributed PID formation control algorithm based solely on azimuth information. With considering that the pilot robot is susceptible to disturbances such as wind direction or road surface irregularities, which may disrupt formation maintenance, the algorithm introduces relative position and velocity feedback of the follower robots. This approach effectively eliminates steady-state error, suppresses the influence of disturbances, improves system dynamic performance, and ensures global system stability. Then, the Routh-Hurwitz stability criterion is used for stability analysis, verifying the global stability of the formation system. Finally, simulation experiments compare the performance of the proposed control law with control laws based on pure proportional and proportional-integral strategies in terms of convergence speed and disturbance rejection. The results show that the proposed control law enables the formation to recover after disturbances and achieve rapid trajectory tracking of the leader, with the relative maximum deviation of the total azimuth error reduced by 5.4%.

    参考文献
    [1] 刘银萍, 杨宜民.多机器人编队控制的研究综述[J].控制工程, 2010,17(S3): 182-186.Liu Y P, Yang Y M. Formation control of multi-robot research[J]. Control Engineering of China, 2010, 17(S3): 182-186. (in Chinese)
    [2] 王帅,周乐来李贻斌, 等.多移动机器人编队领航跟随方法研究进展[J].无人系统技术, 2019,2(5): 1-8.Wang S, Zhou L L, Li Y B, et al. Advances in the leader-following method of multi-mobile robots formation[J]. Unmanned Systems Technology, 2019, 2(5): 1-8. (in Chinese)
    [3] Yang Z Q,Pan X F,Zhang Q,et al.Formation control of first-order multi-agents with region constraint[J]. Automatika, 2020, 61(4): 651-656.
    [4] Oh K K,Park M C,Ahn H S.A survey of multi-agent formation control[J].Automatica,2015,53:424-440.
    [5] Zhao S Y,Zelazo D.Bearing rigidity theory and its applications for control and estimation of network systems: life beyond distance rigidity[J]. IEEE Control Systems Magazine, 2019, 39(2): 66-83.
    [6] 郭鹏军,张睿,高关根,等.基于相对速度和位置辅助的无人机编队协同导航[J].上海交通大学学报,2022,56(11): 1438-1446.Guo P J, Zhang R, Gao G G, et al. Cooperative navigation of UAV formation based on relative velocity and position assistance[J]. Journal of Shanghai Jiaotong University, 2022,56(11): 1438-1446. (in Chinese)
    [7] 郑重,刘帅,钱默抒,等.航天器编队系统相对位置自适应分布式控制[J].中国惯性技术学报, 2019,27(1): 129-135.Zheng Z, Liu S, Qian M S, et al. Adaptive distributed control for relative position of spacecraft formation system[J]. Journal of Chinese Inertial Technology, 2019, 27(1): 129-135. (in Chinese)
    [8] Ogawa T, Sakurama K, Nakatani S,et al.Relative position estimation for formation control with the fusion of predicted future information and measurement data[J].SICE Journal of Control, Measurement, and System Integration, 2020, 13(5): 225-232.
    [9] 刘树光,王欢,刘荣华.基于距离的无人机编队路径跟踪控制[J].飞行力学,2023,41(1): 27-33.Liu S G, Wang H, Liu R H. Distance-based control for UAVs formation path tracking[J]. Flight Dynamics, 2023, 41(1): 27-33. (in Chinese)
    [10] Chen Z, Jiang C, Guo Y. Distance-based formation control of a three-robot system[C]//2019 Chinese Control and Decision Conference (CCDC). Nanchang, China: IEEE, 2019: 5501-5507.
    [11] 孟蕾.基于距离约束的单领航者多智能体编队控制[J].电光与控制, 2021,28(7): 48.Meng L.Multi-agent leader-follower formation control based on distance constraints[J].Electronics Optics & Control, 2021,28(7): 48.(in Chinese)
    [12] 叶结松, 龚柏春,李爽,等.基于相对方位信息和单间距测量的多智能体编队协同控制[J].航空学报,2021,42(7): 324610.Ye J S, Gong B C, Li S, et al.Multi-agent formation cooperative control using relative bearing information and single-spacing measurement[J].Acta Aeronautica et Astronautica Sinica, 2021,42(7): 324610.(in Chinese)
    [13] 李宪珞.基于方位信息的非完整性多智能体编队控制[D].秦皇岛:燕山大学,2020.Li X L.Formation control of nonholonomic multi-agent systems with bearing-only information[D].Qinhuangdao: Yanshan University, 2020. (in Chinese)
    [14] Han Z M,Guo K X,Xie L H,et al. Integrated relative localization and leader-follower formation control[J].IEEE Transactions on Automatic Control, 2019, 64(1): 20-34.
    [15] Choi Y H, Kim D. Distance-based formation control with goal assignment for global asymptotic stability of multi-robot systems[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2020-2027.
    [16] Dong W J,Farrell J A. Cooperative control of multiple nonholonomic mobile agents[J].IEEE Transactions on Automatic Control, 2008, 53(6): 1434-1448.
    [17] 李刚,周尚波,郭尚志等.通信延迟下自适应容错控制及其在航天器编队中的应用[J].重庆大学学报,2024,47(4): 104-113.Li G, Zhou S B, Guo S Z, et al. Adaptive fault-tolerant control with communication delays and its application in spacecraft formation[J]. Journal of Chongqing University, 2024, 47(4): 104-113. (in Chinese)
    [18] Zhao S Y, Lin F, Peng K M, et al. Distributed control of angle-constrained cyclic formations using bearing-only measurements[J]. Systems & Control Letters, 2014, 63: 12-24.
    [19] Basiri M, Bishop A N, Jensfelt P. Distributed control of triangular formations with angle-only constraints[J]. Systems & Control Letters, 2010, 59(2): 147-154.
    [20] Bishop A N. Distributed bearing-only quadrilateral formation control[J].IFAC Proceedings Volumes, 2011, 44(1): 4507-4512.
    [21] Zhao S Y,Li Z H, Ding Z T. Bearing-only formation tracking control of multiagent systems[J].IEEE Transactions on Automatic Control, 2019, 64(11): 4541-4554.
    [22] Zhao J N, Yu X, Li X W,et al.Bearing-only formation tracking control of multi-agent systems with local reference frames and constant-velocity leaders[J]. IEEE Control Systems Letters, 2021, 5(1): 1-6.
    [23] Van Tran Q, Kim J.Bearing-constrained formation tracking control of nonholonomic agents without inter-agent communication[J]. IEEE Control Systems Letters, 2022, 6: 2401-2406.
    [24] 韩青. 基于纯角度观测信息的多机器人编队控制方法研究[D]. 西安: 西北工业大学, 2018.Han Q. Bearing-only observations multi-robot formation control[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [25] Li X L, Luo X Y, Wang J G, et al. Distributed bearing-based formation control of networked thrust-propelled vehicles[J]. Journal of the Franklin Institute, 2019, 356(9): 4907-4927.
    [26] 谭瑶, 梅杰. 利用方位角信息的移动机器人编队控制[J]. 控制理论与应用, 2021,38(7): 1043-1050.Tan Y, Mei J.Formation control of mobile robots using bearing-only measurements[J].Control Theory & Applications, 2021, 38(7): 1043-1050. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李艳,贺彬彬,李明辉,戴庆瑜.基于方位信息的轮式机器人动态编队控制[J].重庆大学学报,2025,48(4):84-96.

复制
分享
文章指标
  • 点击次数:122
  • 下载次数: 120
  • HTML阅读次数: 38
  • 引用次数: 0
历史
  • 收稿日期:2023-07-22
  • 在线发布日期: 2025-04-25
文章二维码