基于XGB-KF模型的农业温室温度预测
作者:
作者单位:

1.中国科学院重庆绿色智能技术研究院,重庆 400714;2.中国科学院大学,北京 100049;3.科大讯飞股份有限公司,合肥 230031

作者简介:

黄威(1998—),男,硕士研究生,主要从事数据挖掘、时间序列预测方向研究。

通讯作者:

刘曙光,男,硕士生导师,(E-mail)liushuguang@cigit.ac.cn。

中图分类号:

TP399

基金项目:

中国科学院重点资助项目(E351600201)。


Agricultural greenhouse temperature prediction based on the XGB-KF model
Author:
Affiliation:

1.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China;2.University of Chinese Academy of Sciences, Beijing 100049, P. R. China;3.Iflytek Co., Ltd., Hefei 230031, P. R. China

Fund Project:

Surpported by Key Research Programs of Chinese Academy of Sciences (E351600201).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对农业温室大棚温度测量受噪声影响不易直接预测的问题,提出一种将XGBoost(extreme gradient boosting)和Kalman filter相结合的集成预测模型XGB-KF(extreme gradient boosting with Kalman filter)。该模型首先基于XGBoost对温室内部当前时刻的温度值进行初步估计,使用卡尔曼滤波(Kalman filter)对得到的估计结果进行动态修正,得到最终的预测结果。基于涿州地区农业温室大棚的传感器数据进行了数值实验,以均方根误差(root mean square error,RMSE)作为主要指标对模型进行性能评估。与XGBoost、Bi-LSTM和Bi-LSTM-KF方法相比较,XGB-KF的RMSE分别降低5.22%、10.85%、7.45%。

    Abstract:

    To address the challenge of agricultural greenhouse temperature measurement being highly susceptible to noise, which limits direct prediction accuracy, this study proposes an integrated prediction model, XGB-KF, combining XGBoost and the Kalman filter. First, the model estimates the current greenhouse temperature using XGBoost. Then, the Kalman filter dynamically adjusts the estimated result to refine the prediction. Numerical experiments are conducted using sensor data from a greenhouse in Zhuozhou, with root mean square error (RMSE) as the main evaluation metric. Compared with XGBoost, Bi-LSTM, and Bi-LSTM-KF methods, the XGB-KF model reduces RMSE by 5.22%, 10.85% and 7.45% respectively.

    参考文献
    [1] 葛志军,傅理.国内外温室产业发展现状与研究进展[J].安徽农业科学,2008,36(35):15751-15753.GE Z J,FU L.Development status and research progress of the creenhouse industry at home and abroad[J].Journal of Anhui Agricultural Sciences,2008,36(35):15751-15753.(in Chinese)
    [2] 周翔宇, 程勇, 王军. 基于改进深度信念网络的农业温室温度预测方法[J]. 计算机应用, 2019, 39(4): 1053-1058.ZHOU X Y, CHENG Y, WANG J. Agricultural greenhouse temperature prediction method based on improved deep belief network[J]. Journal of Computer Applications, 2019, 39(4): 1053-1058. (in Chinese)
    [3] 左志宇, 毛罕平, 张晓东, 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177.ZUO Z Y,MAO H P,ZHANG X D,et al. Forecast model of greenhouse temperature based on time series method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 173-177. (in Chinese)
    [4] Wang H,Huang J J,Zhou H,et al.An integrated variational mode decomposition and arima model to forecast air temperature[J].Sustainability,2019,11(15):4018.
    [5] Liu Q,Jin D D,Shen J,et al.A WSN-based prediction model of microclimate in a greenhouse using extreme learning approaches[C]//2016 18th International Conference on Advanced Communication Technology(ICACT).Piscataway:IEEE,2016:730-735.
    [6] Zou W D,Yao F X,Zhang B H,et al.Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm[J].Neurocomputing,2017,249:72-85.
    [7] Yu H H,Chen Y Y,Hassan S G,et al.Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J].Computers and Electronics in Agriculture,2016,122:94-102.
    [8] Jung D H,Kim H S,Jhin C,et al.Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[J].Computers and Electronics in Agriculture,2020,173:105402.
    [9] Jung D H,Kim H J,Park S H,et al. Recurrent neural network models for prediction of the inside temperature and humidity in greenhouse[C]//Proceedings of the Korean Society for Agricultural Machinery Conference. South Korea: Korean Society for Agricultural Machinery,2017:135-135.
    [10] Song Y E,Moon A, AN S Y,et al.Prediction of smart greenhouse temperature-humidity based on multi-dimensional LSTMs[J].Journal of the Korean Society for Precision Engineering, 2019, 36(3): 239-246.
    [11] Wang H K,Li L,Wu Y,et al.Recurrent neural network model for prediction of microclimate in solar greenhouse[EB/OL].(2018-09-12)[2021-01-01]. https://www.sciencedirect.com/science/article/pii/S2405896318312151.
    [12] Song X J,Huang J J,Song D W.Air quality prediction based on LSTM-Kalman model[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference(ITAIC).Piscataway:IEEE,2019:695-699.
    [13] Yan J N,Mu L,Wang L Z,et al.Temporal convolutional networks for the advance prediction of ENSO[J].Scientific Reports,2020,10(1):8055.
    [14] Hu P,Tong J,Wang J C,et al.A hybrid model based on CNN and Bi-LSTM for urban water demand prediction[C]//2019 IEEE Congress on Evolutionary Computation(CEC).Piscataway:IEEE,2019:1088-1094.
    [15] Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering, 1960, 82(1): 35-45.
    [16] Chen T Q, Guestrin C, et al. XGBoost[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄威,贾若然,钟坤华,刘曙光.基于XGB-KF模型的农业温室温度预测[J].重庆大学学报,2025,48(4):108-114.

复制
分享
文章指标
  • 点击次数:88
  • 下载次数: 105
  • HTML阅读次数: 30
  • 引用次数: 0
历史
  • 收稿日期:2021-01-22
  • 在线发布日期: 2025-04-25
文章二维码