机械-惯性载荷作用下航发齿轮传动壳体拓扑优化
作者:
作者单位:

1.重庆大学 高端装备机械传动全国重点实验室,重庆 400044;2.中国航发四川燃气涡轮研究院,成都 610500

作者简介:

黄昊(2000—),男,硕士研究生,主要从事航发齿轮传动壳体轻量化方法研究,(E-mail)haohuang_cqu@163.com。

通讯作者:

刘怀举,男,教授,博士生导师,(E-mail)huaijuliu@cqu.edu.cn。

中图分类号:

V233.1+4

基金项目:

国家自然科学基金资助项目(52322504);重庆市杰出青年科学基金资助项目(CSTB2023NSCQ-JQX0016)。


Topology optimization of aero-engine gear transmission case considering mechanical-inertial loadings
Author:
Affiliation:

1.State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, P. R. China;2.AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (52322504), and the Chongqing Outstanding Youth Science Foundation(CSTB2023NSCQ-JQX0016).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | | | |
  • 文章评论
    摘要:

    航发齿轮传动机匣在恶劣服役工况和复杂载荷条件下,要求壳体具备轻量化特征,轴承孔错位量作为机匣的关键评价指标,如何保证错位量同时实现轻量化成为一大挑战。文中基于SIMP插值惩罚模型提出了一种考虑机械-惯性载荷作用的航发齿轮传动壳体拓扑优化方法,将惯性过载对机匣附件所产生的影响加入优化模型,以壳体应力、危险轴承孔中心错位量和优化区域体积分数为约束条件,不同工况下的壳体加权柔顺度最小为目标,实现壳体减重7.1%的同时,Von Mises应力、变形量和危险轴承孔中心错位量最大分别下降7.1%、3.1%和12.1%。

    Abstract:

    Under harsh service conditions and complex loading environments, gearbox cases in aero-engines are required to be both structurally robust and lightweight. A key design challenge is balancing weight reduction with control of bearing bore misalignment, which is an important performance metric. To address this issue, a topology optimization method for the gear transmission case is proposed, considering both mechanical and inertial loads. The approach is based on the solid isotropic material with penalization(SIMP) interpolation model. Inertial load effects on attached components are incorporated into the optimization model, which imposes constraints on case stress, critical bearing bore misalignment, and volume fraction of the optimized region. The objective is to minimize the weighted structural compliance of the case under multiple loading conditions. The proposed method achieves a 7.1% reduction in case weight and simultaneously decreasing maximum von Mises stress, total deformation, and critical bearing bore misalignment by 7.1%, 3.1% and 11.1%, respectively.

    参考文献
    [1] 高彤, 张卫红, 朱继宏. 惯性载荷作用下结构拓扑优化[J]. 力学学报, 2009, 41(4): 530-541.Gao T, Zhang W H, Zhu J H. Structural topology optimization under inertial loads[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 530-541. (in Chinese)
    [2] 王普毅, 范天峰, 张太平, 等. 武器装备轻量化结构正向设计方法及应用 [J]. 兵器装备工程学报, 2024, 45(6): 150-158.Wang P Y,Fan T F,Zhang T P,et al. A forward design method and application for lightweight structure of weaponry[J]. Journal of Ordnance Equipment Engineering,2024,45(6): 150-158.
    [3] Sun G Y, Tan D D, Lyu X J, et al. Multi-objective topology optimization of a vehicle door using multiple material tailor-welded blank (TWB) technology[J]. Advances in Engineering Software, 2018, 124: 1-9.
    [4] 廖文和, 戴宁. 航空航天结构轻量化设计制造技术发展现状与挑战 [J]. 南京航空航天大学学报, 2023, 55(3): 347-360.Liao W H, Dai N. Development and challenge of lightweight design and manufacturing technology for aerospace structures [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 347-360. (in chinese)
    [5] Allaire G, Geoffroy-Donders P, Pantz O. Topology optimization of modulated and oriented periodic microstructures by the homogenization method[J]. Computers & Mathematics with Applications, 2019, 78(7): 2197-2229.
    [6] Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635-654.
    [7] Xu T, Lin X S, Xie Y M. Bi-directional evolutionary structural optimization with buckling constraints[J]. Structural and Multidisciplinary Optimization, 2023, 66(4): 67.
    [8] Wang L, Li Z S, Ni B W, et al. A robust topology optimization method considering bounded field parameters with uncertainties based on the variable time step parametric level-set method[J]. Applied Mathematical Modelling, 2022, 107: 441-463.
    [9] Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622.
    [10] Warwick B T, Mechefske C K, Kim I Y. Topology optimization of a pre-stiffened aircraft bulkhead[J]. Structural and Multidisciplinary Optimization, 2019, 60(4): 1667-1685.
    [11] H?gh?j L C, Conlan-Smith C, Sigmund O, et al. Simultaneous shape and topology optimization of wings[J]. Structural and Multidisciplinary Optimization, 2023, 66(5): 116.
    [12] Félix L, Gomes A A, Suleman A. Topology optimization of the internal structure of an aircraft wing subjected to self-weight load[J]. Engineering Optimization, 2020, 52(7): 1119-1135.
    [13] Roper S W K, Lee H, Huh M, et al. Simultaneous isotropic and anisotropic multi-material topology optimization for conceptual-level design of aerospace components[J]. Structural and Multidisciplinary Optimization, 2021, 64(1): 441-456.
    [14] 粟华, 陈伟俊, 龚春林, 等. 环向肋增稳的薄壁圆筒结构定向拓扑优化方法[J]. 宇航学报, 2022, 43(3): 374-382.Su H, Chen W J, Gong C L, et al. Oriented topology optimization of thin-walled structure with circumferential rib enhancement of stability[J]. Journal of Astronautics, 2022, 43(3): 374-382. (in Chinese)
    [15] Qi L, Zhou J X, Jin P C, et al. Low noise optimization of two-stage gearbox housing structure based on acoustic contribution analysis and topology optimization[J]. Journal of Mechanical Science and Technology, 2023, 37(9): 4533-4544.
    [16] 王晋鹏, 宋敏, 王鑫, 等. 结合声学贡献量和拓扑优化的多场点低噪声齿轮箱结构设计方法[J]. 振动与冲击, 2021, 40(16): 61-68, 139.Wang J P, Song M, Wang X, et al. A structural design method of gearboxes with low noise at multi-field points by combining acoustic contribution and topology optimization[J]. Journal of Vibration and Shock, 2021, 40(16): 61-68, 139. (in Chinese)
    [17] Liu L, Kang K, Xi Y J, et al. Optimal design and experimental verification of low radiation noise of gearbox[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 130.
    [18] Kim B S, Han H W, Chung W J, et al. Optimization of gearbox housing shape for agricultural UTV using structural–acoustic coupled analysis[J]. Scientific Reports, 2024, 14: 4145.
    [19] Liang M X, Hu J H, Li S Q, et al. Topology optimization of transmission gearbox under multiple working loads[J]. Advances in Mechanical Engineering, 2018, 10(11): 16878140-18813454.
    [20] Wu J Z, Wei P T, Zhu C C, et al. Development and application of high strength gears[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(7): 3123-3148.
    [21] 李锦花, 史妍妍, 张茂强, 等. 航空发动机附件机匣壳体变形分析[J]. 航空发动机, 2013, 39(3): 59-61, 72.Li J H, Shi Y Y, Zhang M Q, et al. Analysis of accessory gearbox housing distortion for aeroengine[J]. Aeroengine, 2013, 39(3): 59-61, 72. (in Chinese)
    [22] 牛草, 顾广鑫, 朱磊, 等. 车载导弹发射架结构有限元分析与拓扑优化设计 [J]. 兵工学报, 2023, 44(2): 437-451.Niu C, Gu G X, Zhu L, et al. Finite element structural analysis and topology optimization of a vehicle-borne missile launching cradle [J]. Acta Armamentarii, 2023, 44(2): 437-451. (in chinese)
    [23] 孙红, 史妍妍, 侯明曦, 等. 附件机匣壳体变形分析及轴承孔平行度计算方法 [J]. 航空科学技术, 2016, 27(7): 26-29.Sun H, Shi Y Y, Hou M X, et al. Analysis on accessory gearbox housing distortion and calculating method on the parallel degree of bearing hole [J]. Aeronautical Science & Technology, 2016, 27(7): 26-29. (in chinese)
    [24] 彭显昌, 蔡文奇, 林志斌, 等. 电动汽车变速箱壳体静动态分析及拓扑优化设计[J]. 机械传动, 2021, 45(7): 74-81.Peng X C, Cai W Q, Lin Z B, et al. Static and dynamic analysis and topological optimization of gearbox housing in electric vehicle[J]. Journal of Mechanical Transmission, 2021, 45(7): 74-81. (in Chinese)
    [25] Zhang Y, Shan Y C, Liu X D, et al. An integrated multi-objective topology optimization method for automobile wheels made of lightweight materials[J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1585-1605.
    [26] Gao X J, Chen W H, Li Y X, et al. Robust topology optimization of multi-material structures under load uncertainty using the alternating active-phase method[J]. Composite Structures, 2021, 270: 114065.
    [27] 卢清华, 亢诗迪, 陈为林, 等. 基于柔顺铰链拓扑优化的桥式位移放大机构设计、分析与实验测试 [J]. 机械工程学报, 2022, 58(11): 57-71.Lu Q H, Kang S D, Chen W L, et al. Design, analysis and experimental test of the bridge-type displacement amplification mechanism based on the topology optimization of flexure hinge [J]. Journal of Mechanical Engineering, 2022, 58(11): 57-71. (in chinese)
    [28] 万子平, 谭若愚, 郑杰基, 等. 面向武器站模块化基座的多工况与静动态筋壁结构高效设计方法 [J]. 兵工学报, 2023, 44(2): 577-590.Wan Z P, Tan R Y, Zheng J J, et al. Efficient design method of multi-condition and static and dynamic reinforced wall structure for modular base of weapon station [J]. Acta Armamentarii, 2023, 44(2): 577-590. (in chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄昊,夏静贵,吴俊佑,卢泽华,刘怀举.机械-惯性载荷作用下航发齿轮传动壳体拓扑优化[J].重庆大学学报,2025,48(5):15-27.

复制
相关视频

分享
文章指标
  • 点击次数:38
  • 下载次数: 92
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2024-06-15
  • 在线发布日期: 2025-07-11
文章二维码