基于机器学习的轴向柱塞泵效率计算方法
作者:
作者单位:

1.湖南科技大学 机电工程学院,湖南 湘潭 411201;2.湖南星邦智能装备股份有限公司,长沙 410600;3.复杂环境特种机器人控制技术与装备湖南省工程研究中心,湖南 湘潭 411104

作者简介:

刘宇超(2000—),男,硕士研究生,主要从事机电液一体化研究,(E-mail)2462076630@qq.com。

通讯作者:

习毅,男,副教授,硕士生导师,(E-mail)xiyi1235@163.com。

中图分类号:

TH137.51

基金项目:

湖南省教育厅资助项目(23B0496);国家博士后基金资助项目(2023M731822);湖南省研究生科研创新项目(CX20240869)。


A calculation method for axial piston pump efficiency based on machine learning
Author:
Affiliation:

1.College of Electrical and Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China;2.Hunan Xingbang Intelligent Equipment Co., Ltd., Changsha 410600, P. R. China;3.Hunan Engineering Research Center for Complex Environment Special Robot Control Technology and Equipment, Xiangtan, Hunan 411104, P. R. China

Fund Project:

Project of Hunan Provincial Education Department (23B0496), National Postdoctoral Fund (2023M731822), and Hunan Provincial Graduate Student Research Innovation Program(CX20240869)。

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对不同工况下轴向柱塞泵效率理论计算公式和实验结果误差较大的问题,提出了基于机器学习的泵效率计算方法。建立了基于轴向柱塞泵效率的非线性回归模型,通过显著性检验验证了回归模型的有效性;设计了一套基于BP神经网络的柱塞泵效率预测模型,基于实验数据对预测模型进行了训练与验证;分别评估了2个模型的预测精度。结果表明:在变压力、变转速及变流量工况下,相较于现有柱塞泵效率的理论计算公式,所建立的非线性回归模型和BP神经网络模型均能显著提高柱塞泵效率的预测精度,2种方法的效率平均相对误差分别从8.89%减少到1.4%和0.62%。

    Abstract:

    To address the significant discrepancies between theoretical formulas and experimental results for axial piston pump efficiency under different working conditions, a machine learning-based efficiency calculation method is proposed. First, a nonlinear regression model for axial piston pump efficiency is established, and its validity is verified by significance testing. Subsequently, a predictive model based on a BP neural network is designed, trained and verified using experimental data. Finally, the prediction accuracies of both models are evaluated. The results show that, compared with the existing theoretical formulas under conditions of variable pressure, speed, and flow rate, both the nonlinear regression model and the BP neural network model significantly improve the prediction accuracy. Specifically, the average relative errors is reduced from 8.89% to 1.4% and 0.62%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

刘宇超,张宇效,邹俊辉,郭燕,贺旖琳,习毅.基于机器学习的轴向柱塞泵效率计算方法[J].重庆大学学报,2025,48(5):91-104.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-28
  • 在线发布日期: 2025-07-11
文章二维码