基于SVM算法的跌倒预测及保护系统研究
CSTR:
作者:
作者单位:

1.重庆大学,附属中心医院,重庆 400044;2.重庆大学,大数据与软件学院,重庆 400044

作者简介:

彭磊(1984—),男,主治医师,博士,主要从事创伤骨科、脊柱脊髓损伤和骨质疏松方向研究,(E-mail) penglei828@126.com。

通讯作者:

曹治东(1976—),男,主任医师,硕士生导师,(E-mail)872327141@qq.com。

中图分类号:

TP23

基金项目:

重庆市科卫联合项目(2020MSXM111,2023MSXM023); 中央高校基本科研业务费医工融合项(2021CDJYGRH011)。


Research on fall prediction and protection system based on SVM
Author:
Affiliation:

1.Central Hospital, Chongqing University, Chongqing 400044, P. R. China;2.School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Science and Health Joint Project of Chongqing (2020MSXM111,2023MSXM023), Central Universities Project in China(2021CDJYGRH011).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实时跌倒预测保护能够显著降低老人跌倒致伤的风险,提高老人独居自理能力和身心健康水平。为了提高跌倒预测算法的识别准确率、召回率、特异度,减少跌倒判别和气囊保护系统的充气时间,设计了一种基于SVM的多级阈值跌倒预测算法及气囊保护系统,实现对跌倒行为的实时预测和保护。首先,利用佩戴在腰部的加速度传感器实现运动数据的采集;然后,利用支持向量机(support vector machines,SVM)算法得到分类跌倒和日常行为的合加速度、加速度、姿态角阈值;最后,在单片机上预测算法进行重构,实现跌倒行为的实时预测,并根据预测结果判定是否触发气囊保护系统。实验结果表明,本文算法对跌倒的识别准确率、召回率、特异度分别为97.3%、99%和96.1%,保护气囊的平均充气时间为350.4 ms,具有识别准确率高,充气时间短的优点,加强了该系统在实时跌倒预测与保护中的应用。

    Abstract:

    Real-time fall prediction and protection systems can significantly reduce fall-related injury risks while enhancing independence, physical well-being, and mental health of elderly individuals living alone. To improve fall prediction algorithm performance, specifically recognition accuracy, recall rate, and specificity, while minimizing both fall misclassification errors and airbag deployment time, this study proposes a multi-threshold fall prediction algorithm based on support vector machines (SVM), integrated with an airbag protection system. Motion data are first collected through a waist-worn acceleration sensor. Then, the SVM algorithm determines optimal thresholds for acceleration, velocity, and posture angle to differentiate falls from activities of daily living (ADLs). Finally, the optimized algorithm is deployed on a microcontroller to enable real-time fall prediction and trigger the airbag system. Experimental results show that the system achieves 97.3% accuracy, 99% recall and 96.1% specificity in fall recognition, with an average airbag inflation time of 350.4 ms. These metrics confirm both high prediction reliability and rapid protective response, validating the system's effectiveness for real-time fall prediction and protection.

    参考文献
    相似文献
    引证文献
引用本文

彭磊,曹治东,晁瑞,李小虎,胡建华,李新超.基于SVM算法的跌倒预测及保护系统研究[J].重庆大学学报,2025,48(6):112-122.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-11
  • 出版日期:
文章二维码