基于GBM的沥青路面车辙深度预测
CSTR:
作者:
作者单位:

1.清华大学 土木水利学院,北京 100084;2.新疆大学 建筑工程学院,乌鲁木齐 830047

作者简介:

呙润华(1975—),男,博士,副教授,博士生导师,主要从事公路、城市道路及机场道面的性能检测及评估,(E-mail)guorh@tsinghua.edu.cn。

通讯作者:

王静怡,女,硕士研究生,(E-mail)1561123268@qq.com。

中图分类号:

U416.221

基金项目:

清华大学?丰田联合研究院跨学科专项资助项目(20203910013)。


Prediction of rut depth on asphalt pavement based on GBM
Author:
Affiliation:

1.Department of Civil Engineering, Tsinghua university, Beijing 100084, P. R. China;2.School of Architecture and Engineering, Xinjiang University, Xinjiang, Urumqi 830046, P. R. China

Fund Project:

Supported by Tsinghua-Toyota Joint Research Institute Cross-discipline Program(20203910013).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文中基于可解释的机器学习算法(gradient boosting machine,GBM),使用LTPP (long-term pavement performance,LTPP)数据库,考虑多类型影响因素,包括环境因素、交通因素、结构因素和材料因素,对沥青路面车辙深度进行了预测,与人工神经网络、支持向量机算法进行了比较,利用GBM对重要影响因素进行了部分依赖性解释。结果表明,在测试集中,GBM相较于前两者RMSE分别降低了0.75、0.25,MAE分别降低了0.54、0.07。影响车辙深度的重要因素包括:初始测量车辙深度、初次测量经过时间、沥青路面总厚度、年累计当量轴载作用次数。通过部分依赖性分析,了解车辙受影响因素的变化趋势,更好地进行路面养护管理

    Abstract:

    Based on the interpretable Machine learning algorithm gradient boosting machine (GBM), this study employs the long-term pavement performance (LTPP) database to predict the rut depth of asphalt pavement by considering various influential factors, including environmental, traffic, structural, and material variables. Compared with artificial neural network (ANN) and support vector machines (SVM), the GBM model provides superior interpretability by explaining the partial dependence of key factors. The results show that, compared with ANN and SVM, the GBM model reduces the RMSE by 0.75 and 0.25, and the MAE by 0.54 and 0.07, respectively, on the test datasets. The main factors affecting rut depth include the initial rutting depth measurement, time elapsed since the first measurement, total asphalt pavement thickness, and cumulative equivalent single axle load (ESAL). The partial dependency analysis helps pavement maintenance departments better understand rutting development under various influential factors, thereby supporting more effective pavement maintenance and management decisions.

    参考文献
    相似文献
    引证文献
引用本文

呙润华,王静怡,付东雷.基于GBM的沥青路面车辙深度预测[J].重庆大学学报,2025,48(11):67-75.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:
文章二维码