变截面波形钢腹板双目标优化设计及方案决策
CSTR:
作者:
作者单位:

1.武汉理工大学 交通与物流工程学院,武汉 430063;2.深圳市综合交通与市政工程设计研究总院有限公司, 深圳 518003

作者简介:

石旷(1995—),男,硕士研究生,主要从事结构优化研究,(E-mail)whutsk123@163.com。

通讯作者:

杨吉新,男,教授,博士生导师,(E-mail)whutvses@163.com。

中图分类号:

U448.21

基金项目:

国家重点研发计划(2017YFC1502503)。


Bi-objective optimization design and scheme decision-making of corrugated steel webs with variable cross-section
Author:
Affiliation:

1.School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, P. R. China;2.Shenzhen Comprehensive Transportation and Municipal Engineering Design and Research Institute Co., Ltd., Shenzhen 518003, P. R. China

Fund Project:

Supported by the National Key Research and Development Program of China(2017YFC1502503).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高变截面波形钢腹板弹性剪切屈曲强度τ,控制工程造价θ,对某变截面波形钢腹板连续刚构桥的腹板尺寸进行优化设计。首先,建立不同尺寸波形钢腹板模型,通过响应面拟合得到尺寸参数与τ关系式,使用条分方法计算尺寸参数与θ关系式;其次,利用NSGA-Ⅱ算法优化得到Pareto最优解集,提出专家打分法-熵权法-离差最小法,得到指标权重,利用逼近理想解排序法(TOPSIS)决策得到最佳方案;最后,分析参数改变对方案的影响。结果表明,通过屈曲模态及响应面显著性验证,建立的有限元模型及拟合公式准确有效;与原设计比较,最佳方案τ提高93.5%,θ增大37.1%,Pareto解集中存在τ大于原设计且θ小于原设计的解,表明原设计尺寸可进一步改进;分析尺寸改变下τ的变化趋势,最佳方案通过增加波高、板厚、短边高,以及减小平板条宽度和、长边高来提高τ;主观权重直接影响最佳方案的选择,随着τ主观权重的增大,最佳方案中波形钢腹板τ提高,同时θ增大。

    Abstract:

    To improve the elastic shear buckling strength (ESBS) of variable cross-section corrugated steel webs (CSWs) while controlling engineering cost (EC), this study optimizes the web geometry of a continuous rigid frame bridge with CSWs of variable cross-section. First, finite element analysis (FEA) models of CSWs with different geometric parameters were established. The relationships between web dimensions and ESBS were obtained through response surface fitting, while the relationships between geometric parameters and EC were calculated using the slicing method. Second, the Pareto optimal solution set was derived using the NSGA-Ⅱ algorithm. The combined weight of the optimization objectives was determined by integrating the expert scoring method, the entropy weight method, and the minimum deviation principle, and the optimal scheme was selected using the technique for order preference by similarity to ideal solution (TOPSIS). Finally, the impact of parameter variations on the optimization results was analyzed. The results verify that the established FEA model and fitting formula are accurate and effective through buckling mode validation and response surface significance tests. Compared with the original design, the optimal scheme increases the ESBS by 93.5% and the EC by 37.1%. Some Pareto solutions outperform the original design in both indicators, indicating potential for improvement in the original dimensions. According to the response surface fitting formula, ESBS increases with larger wave height, plate thickness, and short-side height, but decreases with larger flat strip width and long-side height. The subjective weighting significantly affects the final scheme selection: as the subjective weight of ESBS increases, both ESBS and EC in the optimal scheme rise accordingly.

    参考文献
    相似文献
    引证文献
引用本文

石旷,杨吉新,吴爱平.变截面波形钢腹板双目标优化设计及方案决策[J].重庆大学学报,2025,48(11):76-91.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:
文章二维码