基于时空图卷积网络的水质多参数预测算法
CSTR:
作者:
作者单位:

1.重庆大学,微电子与通信工程学院,重庆 400044;2.重庆大学,光电技术及系统教育部重点实验室,重庆 400044;3.重庆理工大学 两江人工智能学院,重庆 400054

作者简介:

叶彬强(1981—),男,博士,主要从事人工智能、环境监测方向研究,(E-mail) ybq@cqut.edu.cn。

通讯作者:

李东,男,教授,博士生导师,(E-mail) lidongcuit@126.com。

中图分类号:

TP399;X832

基金项目:

中央高校基本科研业务费资助项目(2023CDJKYJH085);重庆市九龙坡区科技计划项目(2023TJ2001);重庆市青少年创新人才培养计划(CY240903)。


A multi-parameter prediction algorithm for water quality based on spatial-temporal graph convolutional networks
Author:
Affiliation:

1. School of Microelectronics and Communication Engineering; Chongqing University, , Chongqing 400044, P. R. China;2. Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, Chongqing University, , Chongqing 400044, P. R. China;3. School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, P. R. China

Fund Project:

Supported by the Fundamental Research Funds for the Central Universities (2023CDJKYJH085),the Science and Technology Planning Project of Jiulongpo District, Chongqing (2023TJ2001), and the Chongqing Innovative Talent Training Program for Adolescents (CY240903).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水质预测是水资源生态治理体系的核心环节,在时间演变、随机扰动及环境变迁等多重因素作用下,水质监测数据呈现出非平稳动态特征与多维非线性耦合关系。针对流域水质多参数预测中时空依赖复杂、传统模型难以有效融合动态拓扑与长周期特征的问题,文中提出了一种基于时空图卷积网络的水质预测算法。在时间维度上,设计掩码子序列Transformer模块,通过随机掩码自监督预训练任务使模型从长周期数据中提取趋势特征,结合扩张因果卷积捕获水质特征的累积效应,解决传统模型对突变事件的响应滞后问题。在空间维度上,构建动态图结构学习模块,融合基于站点物理距离的预定义邻接矩阵与动态残差图生成动态图结构。实验结果表明,相较于其他水质时空预测模型,该模型具有更好的预测精度,对所有水质指标的预测R2均能达到93%以上。

    Abstract:

    Accurate water quality prediction is essential for effective ecological water management. However, water quality exhibits complex non-stationary dynamics and multi-dimensional nonlinear relationships driven by temporal evolution and environmental variability. In multi-parameter river water quality prediction, intricate spatial-temporal dependencies make it difficult for traditional models to effectively integrate dynamic topology and long-period features. To address this challenge, we propose a spatial-temporal graph convolutional network (STGCN) model. In the temporal dimension, a masked sub-series transformer module is employed to extract long-term trends through self-supervised pretraining. Combined with dilated causal convolution, it captures cumulative water quality effects and alleviates the response lag common in traditional models when facing abrupt changes. In the spatial dimension, a dynamic graph learning module integrates a predefined station-distance adjacency matrix with a dynamic residual map to generate adaptive graph structures. Experimental results demonstrate that the proposed model outperforms existing methods in water quality prediction, achieving an R2 greater than 0.93 across all water quality indicators.

    参考文献
    相似文献
    引证文献
引用本文

叶彬强,曹雪杰,李东,陈昶宏,刘宏,汤斌,冯鹏.基于时空图卷积网络的水质多参数预测算法[J].重庆大学学报,2025,48(11):92-105.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:
文章二维码