知识引导和细粒度信息增强的无监督域自适应行人再识别
CSTR:
作者:
作者单位:

1.昆明理工大学,信息工程与自动化学院;2.昆明理工大学,云南省人工智能重点实验室 昆明650500

作者简介:

董能(1996—),男,硕士研究生,主要从事机器学习,计算机视觉方向研究。

通讯作者:

谢明鸿,(E-mail)minghongxie@163.com。

中图分类号:

基金项目:

国家自然科学基金(61966021,61562053);大学生创新创业训练计划项目(202010674098)。


Knowledge guidance and fine-grained information enhancement for unsupervised domain adaptation person re-identification
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China;2.Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (61966021,61562053) and College Students’ Innovative Entrepreneurial Training Plan Program (202010674098).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无监督域自适应旨在将源域知识迁移到目标域数据集上,是行人再识别中一个非常重要的任务。现实情况下,采集到的数据往往具有视频帧信息。因此,目标域数据集中单一视角下的行人标签极易获取。然而,已有的方法忽略了这些信息,限制了识别性能的提升。为此,笔者提出知识引导和细粒度信息增强的无监督域自适应行人再识别方法,开发了目标域单视角下行人样本已知的新范式,充分挖掘了目标域中有用的信息。同时,将源域知识作为引导,辅助模型提取目标域行人图像的判别性特征。与已有的知识迁移策略相比,这种知识引导的方式能更加有效地缓解域偏移。进一步,将行人的局部信息嵌入到全局特征中,增强了特征的细粒度信息。在2个公开的数据集上进行实验,充分证明了提出方法的有效性和优越性。

    Abstract:

    Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled target domain, playing a very important role in person re-identification. In real-world applications, video-based pedestrian data are often available, making it feasible to obtain single-camera-view labels in the target domain. However, existing UDA methods typically ignore this readily accessible information, thereby limiting performance improvements. To address this issue, we propose a knowledge-guided and fine-grained information enhancement framework for UDA person re-identification. A novel paradigm is introudced that leverages single-view labeled pedestrian samples in the target domain to fully exploit intra-domain information. Meanwhile, source-domain knowledge is used as guidance to assist the model to extract more discriminative target-domain pedestrian representations, effectively mitigating domain shift compared with conventional knowledge-transfer strategies. Furthermore, local pedestrian cues are integrated into global features to strengthen fine-grained feature expression. Experiments conducted on two publicly datasets fully demonstrate the effectiveness and superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

董能,谢明鸿,张亚飞,李凡,李华锋,谭婷婷.知识引导和细粒度信息增强的无监督域自适应行人再识别[J].重庆大学学报,2026,49(2):81-91.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码