压缩奇异值分解等效源法用于结构板件声源识别
DOI:
CSTR:
作者:
作者单位:

1.重庆大学汽车工程学院/机械传动国家重点实验室;2.重庆大学汽车工程学院 重庆

作者简介:

通讯作者:

中图分类号:

TB52

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)项目号:11874096


Compressed singular value decomposition equivalent source method for sound source identification of structural panels
Author:
Affiliation:

1.School of Automotive Engineering, Chongqing University;2.State Key Laboratory of Mechanical Transmission;3.School of Automotive Engineering, Chongqing University,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于压缩感知(CS)理论的等效源法(ESM)已逐步应用于近场声全息(NAH)领域以减少空间采样点数量并扩大声源识别的频率范围。针对空间连续型声源,本文提出了一种压缩奇异值分解等效源法(CSVDESM)来提高声场重建与声源识别性能。该方法首先利用等效源法对要重建的声场进行建模,然后使用奇异值分解法获取声场的一系列正交基,在CS框架下对声场进行重构。最后结合高阶矩阵函数波束形成理论对CSVDESM的输出结果进行修正,通过提高阶次值,不断缩小识别到的声学中心覆盖范围,提高声源识别定位精度。数值仿真分析和实验应用均验证了该方法的有效性与实用性。

    Abstract:

    Equivalent Source Method (ESM) based on compressed sensing (CS) theory is being applied to Nearfield acoustic holography (NAH) gradually to reduce the spatial sampling points and broaden the frequency range of sound source identification. For the spatially extended sound source, a compressed singular value decomposition equivalent source method (CSVDESM) is proposed to improve the performance of sound field reconstruction and the sound source identification. The sound field to be reconstructed is first modeled using ESM. Then a series of orthogonal basis of the source field are obtained by the singular value decomposition, and the reconstruction is accomplished in the CS framework. Finally, combined with the high-order matrix function beamforming, the output of CSVDESM is modified and the identified acoustic center coverage is continuously narrowed by increasing order value, and hence the accuracy of sound source identification can be improved. Numerical simulation and experiment verify the validity and practicality of CSVDESM.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-21
  • 最后修改日期:2019-02-25
  • 录用日期:2019-03-01
  • 在线发布日期:
  • 出版日期:
文章二维码