压缩奇异值分解等效源法用于结构板件声源识别
作者:
作者单位:

1.重庆大学汽车工程学院/机械传动国家重点实验室;2.重庆大学汽车工程学院 重庆

中图分类号:

TB52

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)项目号:11874096


Compressed singular value decomposition equivalent source method for sound source identification of structural panels
Author:
Affiliation:

1.School of Automotive Engineering, Chongqing University;2.State Key Laboratory of Mechanical Transmission;3.School of Automotive Engineering, Chongqing University,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    基于压缩感知(CS)理论的等效源法(ESM)已逐步应用于近场声全息(NAH)领域以减少空间采样点数量并扩大声源识别的频率范围。针对空间连续型声源,本文提出了一种压缩奇异值分解等效源法(CSVDESM)来提高声场重建与声源识别性能。该方法首先利用等效源法对要重建的声场进行建模,然后使用奇异值分解法获取声场的一系列正交基,在CS框架下对声场进行重构。最后结合高阶矩阵函数波束形成理论对CSVDESM的输出结果进行修正,通过提高阶次值,不断缩小识别到的声学中心覆盖范围,提高声源识别定位精度。数值仿真分析和实验应用均验证了该方法的有效性与实用性。

    Abstract:

    Equivalent Source Method (ESM) based on compressed sensing (CS) theory is being applied to Nearfield acoustic holography (NAH) gradually to reduce the spatial sampling points and broaden the frequency range of sound source identification. For the spatially extended sound source, a compressed singular value decomposition equivalent source method (CSVDESM) is proposed to improve the performance of sound field reconstruction and the sound source identification. The sound field to be reconstructed is first modeled using ESM. Then a series of orthogonal basis of the source field are obtained by the singular value decomposition, and the reconstruction is accomplished in the CS framework. Finally, combined with the high-order matrix function beamforming, the output of CSVDESM is modified and the identified acoustic center coverage is continuously narrowed by increasing order value, and hence the accuracy of sound source identification can be improved. Numerical simulation and experiment verify the validity and practicality of CSVDESM.

    参考文献
    [1] Maynard J D , Williams E G , Lee Y . Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH[J]. The Journal of the Acoustical Society of America, 1985, 78(4):1395-1413.
    [2] Veronesi W A , Maynard J D . Nearfield acoustic holography (NAH). II-Holograph-ic reconstruction algorithms and computer i-mplementation[J]. Journal of the acoustical society of America, 1987, 81(5):1307-1322.
    [3] Williams E G , Maynard J D . Holographic Imaging without the Wavelength Resolution Limit[J]. Physical review letters, 1980, 45(7):554-557.
    [4] Williams E G . Continuation of acoustic near-fields[J]. The Journal of the Acoustical Society of America, 2003, 113. pp.1273-1281.
    [5] 于飞, 陈剑, 周广林等. 噪声源识别的近场声全息方法和数值仿真分析[J]. 振动工程学报, 2003, 16(3):339-343.U FEI, CHEN JIAN, ZHOU GUANGLIN,et al. Near field acoustic holography and nu-merical simulation analysis of noise source identification[J]. Journal of Vibration Engineering,2003, 16(3):339-343.
    [6] Hald J . Basic theory and properties of statistically optimized near-field acoustical holography.[J]. Journal of the Acoustical Society of America, 2009, 125(4):2105-2120
    [7] Sarkissian A . Method of superposition applied to patch near-field acoustic holograp-hy[J]. Journal of the Acoustical Society of America, 2005, 118(2):671-678.
    [8] Antoni, J M. A Bayesian approach to s-ound source reconstruction: Optimal basis, regularization, and focusing[J]. The Journal of the Acoustical Society of America, 2012,131(4):2873-2890.
    [9] Aucejo M , Totaro N , Guyader J L . Identification of source velocities on 3D str-uctures in non-anechoic environments: Theo-retical background and experimental validat-ion of the inverse patch transfer functions method[J]. Journal of Sound Vibration, 2010, 329(18):3691-3708.
    [10] Koopmann G H , Song L , Fahnline J B . A method for computing acoustic fields based on the principle of wave superposition[J]. Journal of the Acoustical Society of America, 1989, 86(6):2433-2438.
    [11] 毕传兴, 陈心昭, 陈剑等. 基于等效源法的近场声全息技术[J]. 中国科学:技术科学, 2005, 35(5):535-548.I CHUAN-XING, CHEN XIN-ZHAO, CHEN JIAN,et.al. Near field acoustic holography based on equivalent source method[J]. Chinese Science: technical science, 2005, 35(5): 535-548.
    [12] Xu Z M, Wang Q H, He Y S, et al. A monotonic two-step iterative shrinkage/thr-esholding algorithm for sound source identification based on equivalent source method[J]. Applied Acoustics, 2018, 129:386-396.
    [13] Ping G L , Chu Z G , Xu Z M , et al. A refined wideband acoustical holograph-y based on equivalent source method.[J]. S-cientific Reports, 2017, 7:43458.
    [14] 张磊, 曹跃云, 杨自春. 迭代总体最小二乘正则化的近场声全息方法研究[J]. 振动与冲击, 2016, 35(21):96-101.HANG LEI, CAO YUE-YUN, YANG ZI-CHUN.Nearfield acoustic holography based on Newton iteration total least square regul-arization.[J]. Journal of vibration and shock.2016, 35(21):96-101.
    [15] Candes E J, Wakin M B, An introduct-ion to compressive sampling, IEEE Signal Processing Magazine, 2008, 25, pp. 21-30.
    [16] Chardon G, Daudet L, Peillot A, et al.Near-field acoustic holography using sparse regularization and compressive sampling pri-nciples[J]. The Journal of the Acoustical S-ociety of America, 2012, 132(3):1521-1534.
    [17] Fernandezgrande E , Xenaki A . Comp-ressive sensing with a spherical microphon-e array[J]. Journal of the Acoustical Society o-f America, 2016, 139(2):EL45.
    [18] Hald J. Fast wideband acoustical holog-raphy[J]. Journal of the Acoustical Society of America, 2016, 139(4):1508-1517.
    [19] Fernandezgrande E, Xenaki A, Gerstoft P. A sparse equivalent source method for near-field acoustic holography.[J]. Journ-al o-f the Acoustical Society of America, 2017, 141(1):532.
    [20] Bi C X, Liu Y, Xu L, et al. Sound fi-eld reconstruction using compressed modal equivalent point source method[J]. The Jour-nal of the Acoustical Society of America, 2017, 141(1):73-79.
    [21] Photiadis, Douglas M. The relationship of singular value decomposition to wave ve-ctor filtering in sound radiation problems[J].The Journal of the Acoustical Society of A-merica, 1990, 88(2):1152.
    [22] M. Grant, S. Boyd, CVX: Matlab soft-ware for disciplined convex programming. Version 1.21, http://cvxr.com/cvx.
    [23] Leclere Q. Acoustic imaging using und-erdetermined inverse approaches: Frequencylimitations and optimal regularization[J]. Jo-urnal of Sound Vibration, 2009, 321(3):605-619.
    [24] Dougherty, R P, Functional Beamformi-ng for Aeroacoustic Source Distributions, T-he 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 2014, 16-20 June, 2014.
    [25] 褚志刚, 段云炀, 沈林邦等. 函数波束形成声源识别性能分析及应用[J].机械工程学报, 2017, 53(4):67-76.HU ZHI-GANG, DUAN YUN-YANG, SHEN LIN-BANG, et.al. Performance Analysisand Application of Funct-ional BeamformingSound Source Identification. Journal of mec-hanical engineering,201-7, 53(4):67-76.
    [26] 李凌志,李骏,卢炳武等.平面近场声全息中正则化参数的确定[J]. 声学学报, 201-0, 35(2):169-178.I LING-ZHI, LI JUN, LU BING-WU, et.al. The determin-ation of regularization para-meters in plannarnearfield acoustic holograp-hy. ACTA ACUS-TICA, 201-0, 35(2):169-178.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:770
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-11-21
  • 最后修改日期:2019-02-25
  • 录用日期:2019-03-01
文章二维码