重构全钒液流电池碳毡力学仿真及孔尺度模拟
作者:
作者单位:

1.现代汽车零部件技术湖北省重点实验室;2.卡尔斯鲁厄理工大学,亥姆霍兹研究所,Helmholtzstra&3.amp;4.#223;5.e , 乌尔姆,德国

中图分类号:

TM911.3

基金项目:

国家重点研发计划(2017YFB0102702),国家留学基金委CSC资助(201906950062),中央高校基本科研业务费资助


Solid Mechanical Simulation and Pore-scale Modelling of Reconstructed Carbon Felt for Vanadium Redox Flow Battery
Author:
Affiliation:

1.HubeiSKeySLaboratorySofSSAdvancedSTechnologySforSAutomotiveSComponents,WuhanSUniversitySofS;2.Karlsruher Institut f&3.amp;4.#252;5.r Technologie

Fund Project:

The National Key Research and Development Program of China (No. 2017YFB0102702), China Scholarship Council (CSC No. 201906950062), the Fundamental Research Funds for the Central Universities

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | | | |
  • 文章评论
    摘要:

    为探究全钒液流电池(VRFB)碳毡微观尺度下承受压力的位移变形并量化其对传输特性的影响,应用X射线断层扫描(XCT)微观重构技术、有限元方法(FEM)和孔尺度模拟技术(PSM),考虑碳纤维间受压缩的接触摩擦及挤压弯曲,重构了碳纤维微观结构,研究了碳纤维不同压缩比3D(X、Y和Z方向)位移分布,并量化位移变形对微结构传输特性的影响。结果表明:随着压缩比增大到30%,Z方向位移变化最为明显,位移变化为-59~+5μm,X、Y方向位移变化为-25~+16μm,钒离子XY方向扩散系数减小15.4%,Z方向扩散系数减小24.2%,XY方向电导率升高102.1%,Z方向电导率增大46.2%,且随着压缩比大于20%,扩散系数和Z方向电导率变化速度增大。

    Abstract:

    X-ray computed tomography (XCT) reconstruction technique, finite element method (FEM) and pore scale modelling (PSM) were employed to investigate the displacement distribution and its effects on transport properties of vanadium redox flow battery (VRFB) carbon felt under compression at pore-scale. Contact, friction, extrusion and bending were considered between carbon fibers. Micro-structure of a carbon felt was reconstructed by XCT first, then the displacement distribution of the microstructure in 3D (X, Y and Z direction) with different compression ratio (CR) were investigated, and last the relationship between the displacement and transport properties was quanlificated. The results show that the carbon fibers’ displacement in the Z direction (through plane) under compression is more noticeable. As CR was increased to 30%, the displacement change in Z direction is -59~+5μm, and in XY directions (in-plane) is -25~+ 16μm, the diffusion coefficient of the vanadium ion in XY direction is decreased by 15.4%, and in Z direction is decreased by 24.2%. The conductivity in XY direction is increased by 102.1%, and in Z direction increases by 46.2%. As CR is increased from 20% to 30%, the diffusion coefficient and the conductivity change faster.

    参考文献
    [1] 1. CUNHA á, MARTINS J, RODRIGUES N, et al. Vanadium redox flow batteries: a technology review[J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (7): 889-918.
    [2] 2. HA S; GALLAGHER K G. Estimating the system price of redox flow batteries for grid storage[J]. Journal of Power Sources, 2015, 296: 122-132.
    [3] 3. UHRIG M, KOENIG S, SURIYAH M R, et al. Lithium-based vs. Vanadium Redox Flow Batteries – A Comparison for Home Storage Systems[J]. Energy Procedia, 2016, 99: 35-43.
    [4] 4. KIM Y, CHOI Y Y, YUN N, et al. Activity gradient carbon felt electrodes for vanadium redox flow batteries[J]. Journal of Power Sources, 2018, 408: 128-135.
    [5] 5. MAGGIOLO D, ZANINI F, PICANO F, et al. Particle based method and X-ray computed tomography for pore-scale flow characterization in VRFB electrodes[J]. Energy Storage Materials, 2019, 16: 91-96.
    [6] 6. T?TZKE C, GAISELMANN G, OSENBERG M, et al. Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging[J]. Journal of Power Sources, 2014, 253: 123-131.
    [7] 7. DAVIES T; TUMMINO J. High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes[J]. C, 2018, 4 (1).
    [8] 8. INCE U U, MARK?TTER H, GEORGE M G, et al. Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging[J]. International Journal of Hydrogen Energy, 2018, 43 (1): 391-406.
    [9] 9. WANG Q, QU Z G, JIANG Z Y, et al. Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode[J]. Applied Energy, 2018, 213: 293-305.
    [10] 10. WANG Q, QU Z G, JIANG Z Y, et al. Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field[J]. Applied Energy, 2018, 220: 106-116.
    [11] 11. OH K, WON S; JU H. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 181: 13-23.
    [12] 12. AARON D S, LIU Q, TANG Z, et al. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture[J]. Journal of Power Sources, 2012, 206: 450-453.
    [13] 13. WANG J, YUAN J, YU J-S, et al. Investigation of effects of non-homogenous deformation of gas diffusion layer in a PEM fuel cell[J]. International Journal of Energy Research, 2017, 41 (14): 2121-2137.
    [14] 14. MOVAHEDI M, RAMIAR A; RANJBER A A. 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field[J]. Energy, 2018, 142: 617-632.
    [15] 15. BANERJEE R, BEVILACQUA N, EIFERT L, et al. Characterization of carbon felt electrodes for vanadium redox flow batteries – A pore network modeling approach[J]. Journal of Energy Storage, 2019, 21: 163-171.
    [16] 16.EIFERT L, BANERJEE R, JUSYS Z, et al. Characterization of Carbon Felt Electrodes for Vanadium Redox Flow Batteries: Impact of Treatment Methods[J]. Journal of The Electrochemical Society, 2018, 165 (11): A2577-A2586.
    [17] 17. ILIEV O, LAKDAWALA Z, NE?LER K H L, et al. On the Pore-Scale Modeling and Simulation of Reactive Transport in 3d Geometries[J]. Mathematical Modelling and Analysis, 2017, 22 (5): 671-694.
    [18] 18. LANGE. K J, SUI. P-C; DJILALIA. N. Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers[J]. Journal of The Electrochemical Society, 2010, 157 (10): B1434-B1442.
    [19] 19. MAZUR P, MRLIK J, POCEDIC J, et al. Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery[J]. Journal of Power Sources, 2019, 414: 354-365.
    [20] 20. KOK M D R, JERVIS R, TRANTER T G, et al. Mass transfer in fibrous media with varying anisotropy for flow battery electrodes: Direct numerical simulations with 3D X-ray computed tomography[J]. Chemical Engineering Science, 2019, 196: 104-115.
    [21] 21. SHOJAEEFARD M H, MOLAEIMANESH G R, NAZEMIAN M, et al. A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation[J]. International Journal of Hydrogen Energy, 2016, 41 (44): 20276-20293.
    [22] 22. FADZILLAH D M, ROSLI M I, TALIB M Z M, et al. Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1001-1009.
    [23] 23. JERVIS R, KOK M D R, NEVILLE T P, et al. In situ compression and X-ray computed tomography of flow battery electrodes[J]. Journal of Energy Chemistry, 2018, 27 (5): 1353-1361.
    [24] 24.GAISELMANN G, T?TZKE C, MANKE I, et al. 3D microstructure modeling of compressed fiber-based materials[J]. Journal of Power Sources, 2014, 257: 52-64.
    [25] 25. FRONING D, BRINKMANN J, REIMER U, et al. 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method[J]. Electrochimica Acta, 2013, 110: 325-334.
    [26] 26.SCHULZ V P, BECKER J, WIEGMANN A, et al. Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach[J]. Journal of the Electrochemical Society, 2007, 154 (4): B419-B426.
    [27] 27. ESPINOZA M, ANDERSSON M, YUAN J, et al. Compress effects on porosity, gas-phase tortuosity, and gas permeability in a simulated PEM gas diffusion layer[J]. International Journal of Energy Research, 2015, 39 (11): 1528-1536.
    [28] 28. MOLAEIMANESH G R; NAZEMIAN M. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method[J]. Journal of Power Sources, 2017, 359: 494-506.
    [29] 29. XIAO L S, LUO M J, ZHANG H, et al. Solid Mechanics Simulation of Reconstructed Gas Diffusion Layers for PEMFCs[J]. Journal of The Electrochemical Society, 2019, 166 (6): F377-F385.
    [30] 30. GOLDSTEIN H, POOLE C and SAFKO J. Classic Mechanics [M] Addison Wesley, United States of America (1980).
    [31] 31. WU S R and GU L. Introduction to the EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS [M]. Library of Congress Cataloging in Publication Data, United States of America (2012).
    [32] 32. LIU D, PENG L; LAI X. Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34 (2): 990-997.
    [33] 33. ZHOU P; WU C W. Numerical study on the compression effect of gas diffusion layer on PEMFC performance[J]. Journal of Power Sources, 2007, 170 (1): 93-100.
    [34] 34. ZHOU Y, JIAO K, DU Q, et al. Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38 (29): 12891-12903.
    [35] 35.LANGE K J, SUI P-C; DJILALI N. Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms[J]. Journal of Power Sources, 2012, 208: 354-365.
    [36] 36. LANGE K J, SUI P-C; DJILALI N. Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: Effects of water vapor and temperature[J]. Journal of Power Sources, 2011, 196 (6): 3195-3203.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-04
  • 最后修改日期:2020-06-03
  • 录用日期:2020-06-03
文章二维码