一种新的结合卷积神经网络的隧道内停车检测方法
作者:
作者单位:

太原理工大学电气与动力工程学院

基金项目:

国家自然科学基金项目(61604105)


A new tunnel vehicle stopping detection methodology combined with convolutional neural network
Author:
Affiliation:

College of Electrical and Power Engineering, Taiyuan University of Technology

Fund Project:

NSFC project (Project No. 61604105)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了更准确地检测高速公路隧道内停车行为,将传统的图像处理技术与深度学习相结合。首先,通过基于混合高斯模型(Gaussian Mixture Model,GMM)的背景差分法提取出运动目标。接着通过meanshift算法跟踪这些运动目标,计算运动目标的速度以及在相邻视频帧中运动目标的相关性,通过与速度阈值和相似度阈值的比较得到静止目标。最后,结合卷积神经网络(Convolutional Neural Network,CNN)分类模型识别静止目标是否为车辆。文中方法在高速公路隧道视频上进行测试,达到至少84%的准确率。另外,通过与没有结合卷积神经网络的传统图像处理方法比较,文中方法至少提高了63%的准确率。

    Abstract:

    In order to detect the vehicle stopping in highway tunnel more accurately, the traditional image processing technology is combined with deep learning. Firstly, the foreground moving targets are extracted using the background difference method based on Gaussian Mixture Model (GMM). Then the meanshift algorithm is applied to track these foreground moving targets. By calculating the speed of the moving targets and the correlation of the moving target between the neighbouring video frames, and comparing with the speed threshold and correlation threshold, the static target is detected. Finally, we combine the Convolutional Neural Network (CNN) classification model to identify whether the static target is a vehicle. The method proposed in this work is validated using the real highway tunnel vehicle stopping video and reaches at least 84% accuracy. It is also compared with the traditional image processing method without CNN, which shows that our method improves at least 63% accuracy.

    参考文献
    [1] GAZZAH S, MHALLA A, AMARA N E Ben. Vehicle detection on a video traffic scene: Review and new perspectives[C]//2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT).
    [2] GULER S, SILVERSTEIN J A, PUSHEE I H. Stationary objects in multiple object tracking[C]//2007 IEEE Conference on Advanced Video and Signal Based Surveillance.
    [3] PORIKLI F. Detection of temporarily static regions by processing video at different frame rates[C]//2007 IEEE conference on advanced video and signal based surveillance.
    [4] 赵敏, 张波, 唐毅等. 露天场景下高速公路违章停车视频检测算法[J]. 计算机测量与控制, 2014, 22(2): 489–492.
    [5] 隋靓, 党建武. 基于运动目标轨迹的高速公路异常事件检测算法研究[J]. 计算机应用与软件, 2018, 35: 1.
    [6] 胡煦, 黄俊, 袁梅. 基于视频的路侧停驶事件实时检测算法[J]. 信息通信, 2019(3): 2.
    [7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. .
    [8] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. .
    [9] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. .
    [10] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. .
    [11] CUI B, CRéPUT J-C. Moving Object Detection and Tracking Based on Three-Frame Difference and Background Subtraction with Laplace Filter[C]//International Conference on Artificial Intelligence and Soft Computing. .
    [12] PENG Y, CHEN Z, LIU C, et al. Moving human detection and extraction via improved optical flow and adjacent region merger[C]//2017 Chinese Automation Congress (CAC).
    [13] AHMAD J, LARIJANI H, EMMANUEL R, et al. An intelligent real-time occupancy monitoring system with enhanced encryption and privacy[C]//2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC).
    [14] FAN Y, WEN G, LI D, et al. Video Anomaly Detection and Localization via Gaussian Mixture Fully Convolutional Variational Autoencoder[J]. arXiv preprint arXiv:1805.11223, 2018.
    [15] CHENG Y, HONGYU W, XIAOHONG W. Positioning method research for unmanned aerial vehicles based on meanshift tracking algorithm[C]//2017 29th Chinese Control And Decision Conference (CCDC).
    [16] LIU J, ZHONG X. An object tracking method based on Mean Shift algorithm with HSV color space and texture features[J]. Cluster Comput., 2018: 1–12.
    [17] WANG B, FENG K, YANG W, et al. Study on multiple targets tracking algorithm based on multiple sensors[J]. Cluster Computing, 2018: 1–9.
    [18] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.
    [19] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv preprint arXiv:1207.0580, 2012.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-07
  • 最后修改日期:2020-03-05
  • 录用日期:2020-03-07
文章二维码