[关键词]
[摘要]
提出了一种基于遗传算法的高增益超材料覆层型微带天线拓扑优化设计方法,设计中对超材料基元和辐射基元采用整体考量的方法,选取微带天线的最大增益值为目标函数,选取超材料覆铜区域离散化后方格子铜贴片的二进制0-1编码为优化变量,建立了24GHz超材料覆层型微带天线的拓扑优化模型。并采用贴片方格子的冗余设计方法来消除拓扑优化中的单点连接,进而通过合适的遗传算法求解策略对10×10方格子规模的优化设计问题进行求解,获得了一种不含单点连接的新型超材料覆层型微带天线。结果表明,与普通微带天线相比,创新构型的超材料覆层型微带天线具有更佳的工作频率匹配性能,微带天线的增益性能和方向性得到明显提升,其最大增益性能从7.51dB提升到11.54dB,提升了53.66%。最后对比研究了12×12和14×14等两种不同方格子规模的超材料微带天线拓扑优化设计问题,结果显示本文得到的创新构型优化设计结果是趋于收敛的,考虑到制备性价比,10×10方格子规模下的创新构型是制备最佳选择。
[Key word]
[Abstract]
In this paper, a topology optimization design method is proposed for high gain metamaterial cladding microstrip antenna based on genetic algorithm. Adopting a holistic approach to metamaterial elements and the maximum gain value of the microstrip antenna is selected as the objective function. The binary 0-1 coding of the lattice copper patch behind the discretization of the metamaterial copper-clad area is selected as the optimization variable. the topology optimization model of metamaterial microstrip antenna at 24 GHz is established. Using the redundant design method of patch square grid is to eliminate the point connection phenomenon. A suitable genetic algorithm solving strategy is used to solve the optimal design problem of 10×10 square lattice size, and obtained a new metamaterial microstrip antenna without point connection. The results show that metamaterial cladding microstrip antenna has better matching performance compared with the conventional microstrip antenna, and the gain performance and directivity of the microstrip antenna are significantly improved, and its maximum gain performance is increased from 7.51dB to 11.54dB, the improvement rate is 53.66%. Finally, studied the topological optimization design of metamaterial microstrip antennas with different square lattice sizes such as 12×12 and 14×14. The results show that the creative configuration design of the metamaterial microstrip antenna is convergent, and the microstructure configuration for 10×10 lattice size is the most cost-effective.
[中图分类号]
O224
[基金项目]
国家自然科学基金青年科学基金(11502075);汽车零部件技术湖北省协同创新项目